1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
|
*DECK FLDTRS
SUBROUTINE FLDTRS(NAMP,IPTRK,IPSYS,LL4,S1,F1,NADI)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform NADI inner iterations with the ADI preconditionning. Special
* version for Thomas-Raviart or Raviart-Thomas-Schneider basis.
*
*Copyright:
* Copyright (C) 2006 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Reference:
* A. Hebert, "A Raviart-Thomas-Schneider implementation of the
* simplified Pn method in 3-D hexagonal geometry," PHYSOR 2010 -
* Int. Conf. on Advances in Reactor Physics to Power the Nuclear
* Renaissance, May 9-14, Pittsburgh, Pennsylvania, 2010.
*
*Parameters: input
* NAMP name of the ADI-splitted matrix.
* IPTRK L_TRACK pointer to the tracking information.
* IPSYS L_SYSTEM pointer to system matrices.
* LL4 order of the matrix.
* S1 source term of the linear system.
* F1 initial solution of the linear system.
* NADI number of inner ADI iterations.
*
*Parameters: output
* F1 solution of the linear system after NADI iterations.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPSYS
CHARACTER NAMP*12
INTEGER LL4,NADI
REAL S1(LL4),F1(LL4)
*----
* LOCAL VARIABLES
*----
PARAMETER (NSTATE=40)
CHARACTER NAMT*12
INTEGER ITP(NSTATE)
LOGICAL LMUX,DIAG
REAL, DIMENSION(:), ALLOCATABLE :: FL,FW,FX,FY,FZ,T,GAR
INTEGER C11W_LEN,C11X_LEN,C11Y_LEN,C11Z_LEN
INTEGER, DIMENSION(:), POINTER :: KN,IPERT,IPBW,MUW,IPVW,NBLW,
1 LBLW,IPBX,MUX,IPVX,NBLX,LBLX,IPBY,MUY,IPVY,NBLY,LBLY,IPBZ,MUZ,
2 IPVZ,NBLZ,LBLZ
REAL, DIMENSION(:), POINTER :: TF,DIFF,BW,C11W,BX,C11X,BY,C11Y,
1 BZ,C11Z
DOUBLE PRECISION, DIMENSION(:), POINTER :: CTRAN
TYPE(C_PTR) KN_PTR,IPERT_PTR,DIFF_PTR,TF_PTR,CTRAN_PTR,
1 BW_PTR,C11W_PTR,IPBW_PTR,MUW_PTR,IPVW_PTR,NBLW_PTR,LBLW_PTR,
2 BX_PTR,C11X_PTR,IPBX_PTR,MUX_PTR,IPVX_PTR,NBLX_PTR,LBLX_PTR,
3 BY_PTR,C11Y_PTR,IPBY_PTR,MUY_PTR,IPVY_PTR,NBLY_PTR,LBLY_PTR,
4 BZ_PTR,C11Z_PTR,IPBZ_PTR,MUZ_PTR,IPVZ_PTR,NBLZ_PTR,LBLZ_PTR
*----
* INITIALIZATION
*----
NAMT=NAMP
CALL LCMGET(IPTRK,'STATE-VECTOR',ITP)
IELEM=ITP(9)
ISEG=ITP(17)
LTSW=ITP(19)
LL4F=ITP(25)
LL4W=ITP(26)
LL4X=ITP(27)
LL4Y=ITP(28)
LL4Z=ITP(29)
NLF=ITP(30)
IOFW=LL4F
IOFX=LL4F+LL4W
IOFY=LL4F+LL4W+LL4X
IOFZ=LL4F+LL4W+LL4X+LL4Y
CALL LCMLEN(IPTRK,'MUX',IDUM,ITYLCM)
LMUX=(IDUM.NE.0).AND.(ITYLCM.EQ.1)
DIAG=(LL4Y.GT.0).AND.(.NOT.LMUX)
CALL LCMGPD(IPSYS,'TF'//NAMT,TF_PTR)
CALL C_F_POINTER(TF_PTR,TF,(/ LL4F*NLF/2 /))
*
NULLIFY(IPBW)
NULLIFY(IPVW)
NULLIFY(BW)
IF(LL4W.GT.0) THEN
ISPLH=ITP(13)
LX=ITP(14)
LZ=ITP(16)
NBLOS=LX*LZ/3
CALL LCMLEN(IPTRK,'KN',MAXKN,ITYLCM)
CALL LCMGPD(IPTRK,'CTRAN',CTRAN_PTR)
CALL LCMGPD(IPTRK,'KN',KN_PTR)
CALL LCMGPD(IPTRK,'IPERT',IPERT_PTR)
CALL LCMGPD(IPSYS,'DIFF'//NAMT,DIFF_PTR)
CALL C_F_POINTER(CTRAN_PTR,CTRAN,(/ ((IELEM+1)*IELEM)**2 /))
CALL C_F_POINTER(KN_PTR,KN,(/ MAXKN /))
CALL C_F_POINTER(IPERT_PTR,IPERT,(/ NBLOS /))
CALL C_F_POINTER(DIFF_PTR,DIFF,(/ NBLOS /))
*
ALLOCATE(FW(LL4W))
CALL LCMGPD(IPTRK,'IPBBW',IPBW_PTR)
CALL LCMLEN(IPSYS,'WB',LENWB,ITYL)
IF(LENWB.EQ.0)THEN
CALL LCMGPD(IPTRK,'WB',BW_PTR)
ELSE
CALL LCMGPD(IPSYS,'WB',BW_PTR)
ENDIF
CALL C_F_POINTER(IPBW_PTR,IPBW,(/ 2*IELEM*LL4W /))
CALL C_F_POINTER(BW_PTR,BW,(/ 2*IELEM*LL4W /))
CALL LCMLEN(IPSYS,'WI'//NAMT,C11W_LEN,ITYLCM)
CALL LCMGPD(IPSYS,'WI'//NAMT,C11W_PTR)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
CALL LCMGPD(IPTRK,'MUW',MUW_PTR)
CALL C_F_POINTER(MUW_PTR,MUW,(/ LL4W /))
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
CALL LCMGET(IPTRK,'LL4VW',LL4VW)
CALL LCMGPD(IPTRK,'MUVW',MUW_PTR)
CALL LCMGPD(IPTRK,'IPVW',IPVW_PTR)
CALL LCMLEN(IPTRK,'NBLW',LONW,ITYLCM)
CALL LCMGPD(IPTRK,'NBLW',NBLW_PTR)
CALL LCMGPD(IPTRK,'LBLW',LBLW_PTR)
CALL C_F_POINTER(MUW_PTR,MUW,(/ LL4VW/ISEG /))
CALL C_F_POINTER(IPVW_PTR,IPVW,(/ LL4W /))
CALL C_F_POINTER(NBLW_PTR,NBLW,(/ LONW /))
CALL C_F_POINTER(LBLW_PTR,LBLW,(/ LONW /))
ENDIF
CALL C_F_POINTER(C11W_PTR,C11W,(/ C11W_LEN /))
ENDIF
ALLOCATE(FX(LL4X))
DO 10 I0=1,LL4X
FX(I0)=F1(IOFX+I0)
10 CONTINUE
CALL LCMGPD(IPTRK,'IPBBX',IPBX_PTR)
CALL LCMLEN(IPSYS,'XB',LENXB,ITYL)
IF(LENXB.EQ.0) THEN
CALL LCMGPD(IPTRK,'XB',BX_PTR)
ELSE
CALL LCMGPD(IPSYS,'XB',BX_PTR)
ENDIF
CALL C_F_POINTER(IPBX_PTR,IPBX,(/ 2*IELEM*LL4X /))
CALL C_F_POINTER(BX_PTR,BX,(/ 2*IELEM*LL4X /))
NULLIFY(IPVX)
IF(DIAG) THEN
CALL LCMLEN(IPSYS,'YI'//NAMT,C11X_LEN,ITYLCM)
CALL LCMGPD(IPSYS,'YI'//NAMT,C11X_PTR)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
CALL LCMGPD(IPTRK,'MUY',MUX_PTR)
CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4X /))
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
CALL LCMGET(IPTRK,'LL4VY',LL4VX)
CALL LCMGPD(IPTRK,'MUVY',MUX_PTR)
CALL LCMGPD(IPTRK,'IPVY',IPVX_PTR)
CALL LCMLEN(IPTRK,'NBLY',LONX,ITYLCM)
CALL LCMGPD(IPTRK,'NBLY',NBLX_PTR)
CALL LCMGPD(IPTRK,'LBLY',LBLX_PTR)
CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4VX/ISEG /))
CALL C_F_POINTER(IPVX_PTR,IPVX,(/ LL4X /))
CALL C_F_POINTER(NBLX_PTR,NBLX,(/ LONX /))
CALL C_F_POINTER(LBLX_PTR,LBLX,(/ LONX /))
ENDIF
ELSE
CALL LCMLEN(IPSYS,'XI'//NAMT,C11X_LEN,ITYLCM)
CALL LCMGPD(IPSYS,'XI'//NAMT,C11X_PTR)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
CALL LCMGPD(IPTRK,'MUX',MUX_PTR)
CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4X /))
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
CALL LCMGET(IPTRK,'LL4VX',LL4VX)
CALL LCMGPD(IPTRK,'MUVX',MUX_PTR)
CALL LCMGPD(IPTRK,'IPVX',IPVX_PTR)
CALL LCMLEN(IPTRK,'NBLX',LONX,ITYLCM)
CALL LCMGPD(IPTRK,'NBLX',NBLX_PTR)
CALL LCMGPD(IPTRK,'LBLX',LBLX_PTR)
CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4VX/ISEG /))
CALL C_F_POINTER(IPVX_PTR,IPVX,(/ LL4X /))
CALL C_F_POINTER(NBLX_PTR,NBLX,(/ LONX /))
CALL C_F_POINTER(LBLX_PTR,LBLX,(/ LONX /))
ENDIF
ENDIF
CALL C_F_POINTER(C11X_PTR,C11X,(/ C11X_LEN /))
NULLIFY(IPBY)
NULLIFY(IPVY)
NULLIFY(BY)
IF(LL4Y.GT.0) THEN
ALLOCATE(FY(LL4Y))
DO 20 I0=1,LL4Y
FY(I0)=F1(IOFY+I0)
20 CONTINUE
CALL LCMGPD(IPTRK,'IPBBY',IPBY_PTR)
CALL LCMLEN(IPSYS,'YB',LENYB,ITYL)
IF(LENYB.EQ.0) THEN
CALL LCMGPD(IPTRK,'YB',BY_PTR)
ELSE
CALL LCMGPD(IPSYS,'YB',BY_PTR)
ENDIF
CALL C_F_POINTER(IPBY_PTR,IPBY,(/ 2*IELEM*LL4Y /))
CALL C_F_POINTER(BY_PTR,BY,(/ 2*IELEM*LL4Y /))
CALL LCMLEN(IPSYS,'YI'//NAMT,C11Y_LEN,ITYLCM)
CALL LCMGPD(IPSYS,'YI'//NAMT,C11Y_PTR)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
CALL LCMGPD(IPTRK,'MUY',MUY_PTR)
CALL C_F_POINTER(MUY_PTR,MUY,(/ LL4Y /))
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
CALL LCMGET(IPTRK,'LL4VY',LL4VY)
CALL LCMGPD(IPTRK,'MUVY',MUY_PTR)
CALL LCMGPD(IPTRK,'IPVY',IPVY_PTR)
CALL LCMLEN(IPTRK,'NBLY',LONY,ITYLCM)
CALL LCMGPD(IPTRK,'NBLY',NBLY_PTR)
CALL LCMGPD(IPTRK,'LBLY',LBLY_PTR)
CALL C_F_POINTER(MUY_PTR,MUY,(/ LL4VY/ISEG /))
CALL C_F_POINTER(IPVY_PTR,IPVY,(/ LL4Y /))
CALL C_F_POINTER(NBLY_PTR,NBLY,(/ LONY /))
CALL C_F_POINTER(LBLY_PTR,LBLY,(/ LONY /))
ENDIF
CALL C_F_POINTER(C11Y_PTR,C11Y,(/ C11Y_LEN /))
ENDIF
NULLIFY(IPBZ)
NULLIFY(IPVZ)
NULLIFY(BZ)
IF(LL4Z.GT.0) THEN
ALLOCATE(FZ(LL4Z))
DO 30 I0=1,LL4Z
FZ(I0)=F1(IOFZ+I0)
30 CONTINUE
CALL LCMGPD(IPTRK,'IPBBZ',IPBZ_PTR)
CALL LCMLEN(IPSYS,'ZB',LENZB,ITYL)
IF(LENZB.EQ.0) THEN
CALL LCMGPD(IPTRK,'ZB',BZ_PTR)
ELSE
CALL LCMGPD(IPSYS,'ZB',BZ_PTR)
ENDIF
CALL C_F_POINTER(IPBZ_PTR,IPBZ,(/ 2*IELEM*LL4Z /))
CALL C_F_POINTER(BZ_PTR,BZ,(/ 2*IELEM*LL4Z /))
CALL LCMLEN(IPSYS,'ZI'//NAMT,C11Z_LEN,ITYLCM)
CALL LCMGPD(IPSYS,'ZI'//NAMT,C11Z_PTR)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
CALL LCMGPD(IPTRK,'MUZ',MUZ_PTR)
CALL C_F_POINTER(MUZ_PTR,MUZ,(/ LL4Z /))
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
CALL LCMGET(IPTRK,'LL4VZ',LL4VZ)
CALL LCMGPD(IPTRK,'MUVZ',MUZ_PTR)
CALL LCMGPD(IPTRK,'IPVZ',IPVZ_PTR)
CALL LCMLEN(IPTRK,'NBLZ',LONZ,ITYLCM)
CALL LCMGPD(IPTRK,'NBLZ',NBLZ_PTR)
CALL LCMGPD(IPTRK,'LBLZ',LBLZ_PTR)
CALL C_F_POINTER(MUZ_PTR,MUZ,(/ LL4VZ/ISEG /))
CALL C_F_POINTER(IPVZ_PTR,IPVZ,(/ LL4Z /))
CALL C_F_POINTER(NBLZ_PTR,NBLZ,(/ LONZ /))
CALL C_F_POINTER(LBLZ_PTR,LBLZ,(/ LONZ /))
ENDIF
CALL C_F_POINTER(C11Z_PTR,C11Z,(/ C11Z_LEN /))
ENDIF
ALLOCATE(FL(LL4F))
*----
* W DIRECTION
*----
IF(ISEG.GT.0) ALLOCATE(T(ISEG))
DO 520 IADI=1,NADI
IF(LL4W.GT.0) THEN
DO 40 I0=1,LL4F
FL(I0)=S1(I0)
40 CONTINUE
DO 60 I0=1,LL4X
DO 50 J0=1,2*IELEM
JJ=IPBX((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 60
FL(JJ)=FL(JJ)-BX((I0-1)*2*IELEM+J0)*FX(I0)
50 CONTINUE
60 CONTINUE
DO 80 I0=1,LL4Y
DO 70 J0=1,2*IELEM
JJ=IPBY((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 80
FL(JJ)=FL(JJ)-BY((I0-1)*2*IELEM+J0)*FY(I0)
70 CONTINUE
80 CONTINUE
DO 100 I0=1,LL4Z
DO 90 J0=1,2*IELEM
JJ=IPBZ((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 100
FL(JJ)=FL(JJ)-BZ((I0-1)*2*IELEM+J0)*FZ(I0)
90 CONTINUE
100 CONTINUE
DO 130 I0=1,LL4W
GGW=-S1(IOFW+I0)
DO 110 J0=1,2*IELEM
JJ=IPBW((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 120
GGW=GGW+BW((I0-1)*2*IELEM+J0)*FL(JJ)/TF(JJ)
110 CONTINUE
120 FW(I0)=GGW
130 CONTINUE
*
* PIOLAT TRANSFORM TERM.
CALL FLDPWY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
1 FY,FW)
CALL FLDPWX(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,FX,FW)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
CALL ALLDLS(LL4W,MUW,C11W,FW)
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
ALLOCATE(GAR(LL4VW))
GAR(:LL4VW)=0.0
DO 140 I=1,LL4W
GAR(IPVW(I))=FW(I)
140 CONTINUE
CALL ALVDLS(LTSW,MUW,C11W,GAR,ISEG,LONW,NBLW,LBLW,T)
DO 150 I=1,LL4W
FW(I)=GAR(IPVW(I))
150 CONTINUE
DEALLOCATE(GAR)
ENDIF
ENDIF
*----
* X DIRECTION
*----
DO 160 I0=1,LL4F
FL(I0)=S1(I0)
160 CONTINUE
DO 180 I0=1,LL4W
DO 170 J0=1,2*IELEM
JJ=IPBW((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 180
FL(JJ)=FL(JJ)-BW((I0-1)*2*IELEM+J0)*FW(I0)
170 CONTINUE
180 CONTINUE
DO 200 I0=1,LL4Y
DO 190 J0=1,2*IELEM
JJ=IPBY((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 200
FL(JJ)=FL(JJ)-BY((I0-1)*2*IELEM+J0)*FY(I0)
190 CONTINUE
200 CONTINUE
DO 220 I0=1,LL4Z
DO 210 J0=1,2*IELEM
JJ=IPBZ((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 220
FL(JJ)=FL(JJ)-BZ((I0-1)*2*IELEM+J0)*FZ(I0)
210 CONTINUE
220 CONTINUE
DO 250 I0=1,LL4X
GGX=-S1(IOFX+I0)
DO 230 J0=1,2*IELEM
JJ=IPBX((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 240
GGX=GGX+BX((I0-1)*2*IELEM+J0)*FL(JJ)/TF(JJ)
230 CONTINUE
240 FX(I0)=GGX
250 CONTINUE
IF(LL4W.GT.0) THEN
* PIOLAT TRANSFORM TERM.
CALL FLDPXW(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,FW,FX)
CALL FLDPXY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
1 FY,FX)
ENDIF
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
CALL ALLDLS(LL4X,MUX,C11X,FX)
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
ALLOCATE(GAR(LL4VX))
GAR(:LL4VX)=0.0
DO 260 I=1,LL4X
GAR(IPVX(I))=FX(I)
260 CONTINUE
CALL ALVDLS(LTSW,MUX,C11X,GAR,ISEG,LONX,NBLX,LBLX,T)
DO 270 I=1,LL4X
FX(I)=GAR(IPVX(I))
270 CONTINUE
DEALLOCATE(GAR)
ENDIF
*----
* Y DIRECTION
*----
IF(LL4Y.GT.0) THEN
DO 280 I0=1,LL4F
FL(I0)=S1(I0)
280 CONTINUE
DO 300 I0=1,LL4W
DO 290 J0=1,2*IELEM
JJ=IPBW((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 300
FL(JJ)=FL(JJ)-BW((I0-1)*2*IELEM+J0)*FW(I0)
290 CONTINUE
300 CONTINUE
DO 320 I0=1,LL4X
DO 310 J0=1,2*IELEM
JJ=IPBX((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 320
FL(JJ)=FL(JJ)-BX((I0-1)*2*IELEM+J0)*FX(I0)
310 CONTINUE
320 CONTINUE
DO 340 I0=1,LL4Z
DO 330 J0=1,2*IELEM
JJ=IPBZ((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 340
FL(JJ)=FL(JJ)-BZ((I0-1)*2*IELEM+J0)*FZ(I0)
330 CONTINUE
340 CONTINUE
DO 370 I0=1,LL4Y
GGY=-S1(IOFY+I0)
DO 350 J0=1,2*IELEM
JJ=IPBY((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 360
GGY=GGY+BY((I0-1)*2*IELEM+J0)*FL(JJ)/TF(JJ)
350 CONTINUE
360 FY(I0)=GGY
370 CONTINUE
IF(LL4W.GT.0) THEN
* PIOLAT TRANSFORM TERM.
CALL FLDPYX(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
1 DIFF,FX,FY)
CALL FLDPYW(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
1 DIFF,FW,FY)
ENDIF
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
CALL ALLDLS(LL4Y,MUY,C11Y,FY)
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
ALLOCATE(GAR(LL4VY))
GAR(:LL4VY)=0.0
DO 380 I=1,LL4Y
GAR(IPVY(I))=FY(I)
380 CONTINUE
CALL ALVDLS(LTSW,MUY,C11Y,GAR,ISEG,LONY,NBLY,LBLY,T)
DO 390 I=1,LL4Y
FY(I)=GAR(IPVY(I))
390 CONTINUE
DEALLOCATE(GAR)
ENDIF
ENDIF
*----
* Z DIRECTION
*----
IF(LL4Z.GT.0) THEN
DO 400 I0=1,LL4F
FL(I0)=S1(I0)
400 CONTINUE
DO 420 I0=1,LL4W
DO 410 J0=1,2*IELEM
JJ=IPBW((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 420
FL(JJ)=FL(JJ)-BW((I0-1)*2*IELEM+J0)*FW(I0)
410 CONTINUE
420 CONTINUE
DO 440 I0=1,LL4X
DO 430 J0=1,2*IELEM
JJ=IPBX((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 440
FL(JJ)=FL(JJ)-BX((I0-1)*2*IELEM+J0)*FX(I0)
430 CONTINUE
440 CONTINUE
DO 460 I0=1,LL4Y
DO 450 J0=1,2*IELEM
JJ=IPBY((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 460
FL(JJ)=FL(JJ)-BY((I0-1)*2*IELEM+J0)*FY(I0)
450 CONTINUE
460 CONTINUE
DO 490 I0=1,LL4Z
GGZ=-S1(IOFZ+I0)
DO 470 J0=1,2*IELEM
JJ=IPBZ((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 480
GGZ=GGZ+BZ((I0-1)*2*IELEM+J0)*FL(JJ)/TF(JJ)
470 CONTINUE
480 FZ(I0)=GGZ
490 CONTINUE
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
CALL ALLDLS(LL4Z,MUZ,C11Z,FZ)
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
ALLOCATE(GAR(LL4VZ))
GAR(:LL4VZ)=0.0
DO 500 I=1,LL4Z
GAR(IPVZ(I))=FZ(I)
500 CONTINUE
CALL ALVDLS(LTSW,MUZ,C11Z,GAR,ISEG,LONZ,NBLZ,LBLZ,T)
DO 510 I=1,LL4Z
FZ(I)=GAR(IPVZ(I))
510 CONTINUE
DEALLOCATE(GAR)
ENDIF
ENDIF
520 CONTINUE
IF(ISEG.GT.0) DEALLOCATE(T)
DEALLOCATE(FL)
*----
* COMPUTE FLUX AND RECOVER CURRENTS
*----
DO 530 I0=1,LL4F
F1(I0)=S1(I0)
530 CONTINUE
DO 550 J0=1,LL4W
DO 540 I0=1,2*IELEM
II=IPBW((J0-1)*2*IELEM+I0)
IF(II.EQ.0) GO TO 550
F1(II)=F1(II)-BW((J0-1)*2*IELEM+I0)*FW(J0)
540 CONTINUE
550 CONTINUE
DO 570 J0=1,LL4X
DO 560 I0=1,2*IELEM
II=IPBX((J0-1)*2*IELEM+I0)
IF(II.EQ.0) GO TO 570
F1(II)=F1(II)-BX((J0-1)*2*IELEM+I0)*FX(J0)
560 CONTINUE
570 CONTINUE
DO 590 J0=1,LL4Y
DO 580 I0=1,2*IELEM
II=IPBY((J0-1)*2*IELEM+I0)
IF(II.EQ.0) GO TO 590
F1(II)=F1(II)-BY((J0-1)*2*IELEM+I0)*FY(J0)
580 CONTINUE
590 CONTINUE
DO 610 J0=1,LL4Z
DO 600 I0=1,2*IELEM
II=IPBZ((J0-1)*2*IELEM+I0)
IF(II.EQ.0) GO TO 610
F1(II)=F1(II)-BZ((J0-1)*2*IELEM+I0)*FZ(J0)
600 CONTINUE
610 CONTINUE
DO 620 I0=1,LL4F
F1(I0)=F1(I0)/TF(I0)
620 CONTINUE
IF(LL4W.GT.0) THEN
DO 630 I0=1,LL4W
F1(IOFW+I0)=FW(I0)
630 CONTINUE
DEALLOCATE(FW)
ENDIF
DO 640 I0=1,LL4X
F1(IOFX+I0)=FX(I0)
640 CONTINUE
DEALLOCATE(FX)
IF(LL4Y.GT.0) THEN
DO 650 I0=1,LL4Y
F1(IOFY+I0)=FY(I0)
650 CONTINUE
DEALLOCATE(FY)
ENDIF
IF(LL4Z.GT.0) THEN
DO 660 I0=1,LL4Z
F1(IOFZ+I0)=FZ(I0)
660 CONTINUE
DEALLOCATE(FZ)
ENDIF
RETURN
END
|