summaryrefslogtreecommitdiff
path: root/Trivac/src/FLDTRS.f
blob: 3cd63678ce06496845a51af967d58ea59e42add8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
*DECK FLDTRS
      SUBROUTINE FLDTRS(NAMP,IPTRK,IPSYS,LL4,S1,F1,NADI)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform NADI inner iterations with the ADI preconditionning.  Special
* version for Thomas-Raviart or Raviart-Thomas-Schneider basis.
*
*Copyright:
* Copyright (C) 2006 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Reference:
* A. Hebert, "A Raviart-Thomas-Schneider implementation of the
* simplified Pn method in 3-D hexagonal geometry,"  PHYSOR 2010 -
* Int. Conf. on Advances in Reactor Physics to Power the Nuclear
* Renaissance, May 9-14, Pittsburgh, Pennsylvania, 2010.
*
*Parameters: input
* NAMP    name of the ADI-splitted matrix.
* IPTRK   L_TRACK pointer to the tracking information.
* IPSYS   L_SYSTEM pointer to system matrices.
* LL4     order of the matrix.
* S1      source term of the linear system.
* F1      initial solution of the linear system.
* NADI    number of inner ADI iterations.
*
*Parameters: output
* F1      solution of the linear system after NADI iterations.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPTRK,IPSYS
      CHARACTER NAMP*12
      INTEGER LL4,NADI
      REAL S1(LL4),F1(LL4)
*----
*  LOCAL VARIABLES
*----
      PARAMETER (NSTATE=40)
      CHARACTER NAMT*12
      INTEGER ITP(NSTATE)
      LOGICAL LMUX,DIAG
      REAL, DIMENSION(:), ALLOCATABLE :: FL,FW,FX,FY,FZ,T,GAR
      INTEGER C11W_LEN,C11X_LEN,C11Y_LEN,C11Z_LEN
      INTEGER, DIMENSION(:), POINTER :: KN,IPERT,IPBW,MUW,IPVW,NBLW,
     1 LBLW,IPBX,MUX,IPVX,NBLX,LBLX,IPBY,MUY,IPVY,NBLY,LBLY,IPBZ,MUZ,
     2 IPVZ,NBLZ,LBLZ
      REAL, DIMENSION(:), POINTER :: TF,DIFF,BW,C11W,BX,C11X,BY,C11Y,
     1 BZ,C11Z
      DOUBLE PRECISION, DIMENSION(:), POINTER :: CTRAN
      TYPE(C_PTR) KN_PTR,IPERT_PTR,DIFF_PTR,TF_PTR,CTRAN_PTR,
     1 BW_PTR,C11W_PTR,IPBW_PTR,MUW_PTR,IPVW_PTR,NBLW_PTR,LBLW_PTR,
     2 BX_PTR,C11X_PTR,IPBX_PTR,MUX_PTR,IPVX_PTR,NBLX_PTR,LBLX_PTR,
     3 BY_PTR,C11Y_PTR,IPBY_PTR,MUY_PTR,IPVY_PTR,NBLY_PTR,LBLY_PTR,
     4 BZ_PTR,C11Z_PTR,IPBZ_PTR,MUZ_PTR,IPVZ_PTR,NBLZ_PTR,LBLZ_PTR
*----
*  INITIALIZATION
*----
      NAMT=NAMP
      CALL LCMGET(IPTRK,'STATE-VECTOR',ITP)
      IELEM=ITP(9)
      ISEG=ITP(17)
      LTSW=ITP(19)
      LL4F=ITP(25)
      LL4W=ITP(26)
      LL4X=ITP(27)
      LL4Y=ITP(28)
      LL4Z=ITP(29)
      NLF=ITP(30)
      IOFW=LL4F
      IOFX=LL4F+LL4W
      IOFY=LL4F+LL4W+LL4X
      IOFZ=LL4F+LL4W+LL4X+LL4Y
      CALL LCMLEN(IPTRK,'MUX',IDUM,ITYLCM)
      LMUX=(IDUM.NE.0).AND.(ITYLCM.EQ.1)
      DIAG=(LL4Y.GT.0).AND.(.NOT.LMUX)
      CALL LCMGPD(IPSYS,'TF'//NAMT,TF_PTR)
      CALL C_F_POINTER(TF_PTR,TF,(/ LL4F*NLF/2 /))
*
      NULLIFY(IPBW)
      NULLIFY(IPVW)
      NULLIFY(BW)
      IF(LL4W.GT.0) THEN
         ISPLH=ITP(13)
         LX=ITP(14)
         LZ=ITP(16)
         NBLOS=LX*LZ/3
         CALL LCMLEN(IPTRK,'KN',MAXKN,ITYLCM)
         CALL LCMGPD(IPTRK,'CTRAN',CTRAN_PTR)
         CALL LCMGPD(IPTRK,'KN',KN_PTR)
         CALL LCMGPD(IPTRK,'IPERT',IPERT_PTR)
         CALL LCMGPD(IPSYS,'DIFF'//NAMT,DIFF_PTR)
         CALL C_F_POINTER(CTRAN_PTR,CTRAN,(/ ((IELEM+1)*IELEM)**2 /))
         CALL C_F_POINTER(KN_PTR,KN,(/ MAXKN /))
         CALL C_F_POINTER(IPERT_PTR,IPERT,(/ NBLOS /))
         CALL C_F_POINTER(DIFF_PTR,DIFF,(/ NBLOS /))
*
         ALLOCATE(FW(LL4W))
         CALL LCMGPD(IPTRK,'IPBBW',IPBW_PTR)
         CALL LCMLEN(IPSYS,'WB',LENWB,ITYL)
         IF(LENWB.EQ.0)THEN
           CALL LCMGPD(IPTRK,'WB',BW_PTR)
         ELSE
           CALL LCMGPD(IPSYS,'WB',BW_PTR)
         ENDIF
         CALL C_F_POINTER(IPBW_PTR,IPBW,(/ 2*IELEM*LL4W /))
         CALL C_F_POINTER(BW_PTR,BW,(/ 2*IELEM*LL4W /))
         CALL LCMLEN(IPSYS,'WI'//NAMT,C11W_LEN,ITYLCM)
         CALL LCMGPD(IPSYS,'WI'//NAMT,C11W_PTR)
         IF(ISEG.EQ.0) THEN
*           SCALAR SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
            CALL LCMGPD(IPTRK,'MUW',MUW_PTR)
            CALL C_F_POINTER(MUW_PTR,MUW,(/ LL4W /))
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
            CALL LCMGET(IPTRK,'LL4VW',LL4VW)
            CALL LCMGPD(IPTRK,'MUVW',MUW_PTR)
            CALL LCMGPD(IPTRK,'IPVW',IPVW_PTR)
            CALL LCMLEN(IPTRK,'NBLW',LONW,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLW',NBLW_PTR)
            CALL LCMGPD(IPTRK,'LBLW',LBLW_PTR)
            CALL C_F_POINTER(MUW_PTR,MUW,(/ LL4VW/ISEG /))
            CALL C_F_POINTER(IPVW_PTR,IPVW,(/ LL4W /))
            CALL C_F_POINTER(NBLW_PTR,NBLW,(/ LONW /))
            CALL C_F_POINTER(LBLW_PTR,LBLW,(/ LONW /))
         ENDIF
         CALL C_F_POINTER(C11W_PTR,C11W,(/ C11W_LEN /))
      ENDIF
      ALLOCATE(FX(LL4X))
      DO 10 I0=1,LL4X
      FX(I0)=F1(IOFX+I0)
   10 CONTINUE
      CALL LCMGPD(IPTRK,'IPBBX',IPBX_PTR)
      CALL LCMLEN(IPSYS,'XB',LENXB,ITYL)
      IF(LENXB.EQ.0) THEN
        CALL LCMGPD(IPTRK,'XB',BX_PTR)
      ELSE
        CALL LCMGPD(IPSYS,'XB',BX_PTR)
      ENDIF
      CALL C_F_POINTER(IPBX_PTR,IPBX,(/ 2*IELEM*LL4X /))
      CALL C_F_POINTER(BX_PTR,BX,(/ 2*IELEM*LL4X /))
      NULLIFY(IPVX)
      IF(DIAG) THEN
         CALL LCMLEN(IPSYS,'YI'//NAMT,C11X_LEN,ITYLCM)
         CALL LCMGPD(IPSYS,'YI'//NAMT,C11X_PTR)
         IF(ISEG.EQ.0) THEN
*           SCALAR SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
            CALL LCMGPD(IPTRK,'MUY',MUX_PTR)
            CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4X /))
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
            CALL LCMGET(IPTRK,'LL4VY',LL4VX)
            CALL LCMGPD(IPTRK,'MUVY',MUX_PTR)
            CALL LCMGPD(IPTRK,'IPVY',IPVX_PTR)
            CALL LCMLEN(IPTRK,'NBLY',LONX,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLY',NBLX_PTR)
            CALL LCMGPD(IPTRK,'LBLY',LBLX_PTR)
            CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4VX/ISEG /))
            CALL C_F_POINTER(IPVX_PTR,IPVX,(/ LL4X /))
            CALL C_F_POINTER(NBLX_PTR,NBLX,(/ LONX /))
            CALL C_F_POINTER(LBLX_PTR,LBLX,(/ LONX /))
         ENDIF
      ELSE
         CALL LCMLEN(IPSYS,'XI'//NAMT,C11X_LEN,ITYLCM)
         CALL LCMGPD(IPSYS,'XI'//NAMT,C11X_PTR)
         IF(ISEG.EQ.0) THEN
*           SCALAR SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
            CALL LCMGPD(IPTRK,'MUX',MUX_PTR)
            CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4X /))
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
            CALL LCMGET(IPTRK,'LL4VX',LL4VX)
            CALL LCMGPD(IPTRK,'MUVX',MUX_PTR)
            CALL LCMGPD(IPTRK,'IPVX',IPVX_PTR)
            CALL LCMLEN(IPTRK,'NBLX',LONX,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLX',NBLX_PTR)
            CALL LCMGPD(IPTRK,'LBLX',LBLX_PTR)
            CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4VX/ISEG /))
            CALL C_F_POINTER(IPVX_PTR,IPVX,(/ LL4X /))
            CALL C_F_POINTER(NBLX_PTR,NBLX,(/ LONX /))
            CALL C_F_POINTER(LBLX_PTR,LBLX,(/ LONX /))
         ENDIF
      ENDIF
      CALL C_F_POINTER(C11X_PTR,C11X,(/ C11X_LEN /))
      NULLIFY(IPBY)
      NULLIFY(IPVY)
      NULLIFY(BY)
      IF(LL4Y.GT.0) THEN
         ALLOCATE(FY(LL4Y))
         DO 20 I0=1,LL4Y
         FY(I0)=F1(IOFY+I0)
   20    CONTINUE
         CALL LCMGPD(IPTRK,'IPBBY',IPBY_PTR)
         CALL LCMLEN(IPSYS,'YB',LENYB,ITYL)
         IF(LENYB.EQ.0) THEN
            CALL LCMGPD(IPTRK,'YB',BY_PTR)
         ELSE
            CALL LCMGPD(IPSYS,'YB',BY_PTR)
         ENDIF
         CALL C_F_POINTER(IPBY_PTR,IPBY,(/ 2*IELEM*LL4Y /))
         CALL C_F_POINTER(BY_PTR,BY,(/ 2*IELEM*LL4Y /))
         CALL LCMLEN(IPSYS,'YI'//NAMT,C11Y_LEN,ITYLCM)
         CALL LCMGPD(IPSYS,'YI'//NAMT,C11Y_PTR)
         IF(ISEG.EQ.0) THEN
*           SCALAR SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
            CALL LCMGPD(IPTRK,'MUY',MUY_PTR)
            CALL C_F_POINTER(MUY_PTR,MUY,(/ LL4Y /))
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
            CALL LCMGET(IPTRK,'LL4VY',LL4VY)
            CALL LCMGPD(IPTRK,'MUVY',MUY_PTR)
            CALL LCMGPD(IPTRK,'IPVY',IPVY_PTR)
            CALL LCMLEN(IPTRK,'NBLY',LONY,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLY',NBLY_PTR)
            CALL LCMGPD(IPTRK,'LBLY',LBLY_PTR)
            CALL C_F_POINTER(MUY_PTR,MUY,(/ LL4VY/ISEG /))
            CALL C_F_POINTER(IPVY_PTR,IPVY,(/ LL4Y /))
            CALL C_F_POINTER(NBLY_PTR,NBLY,(/ LONY /))
            CALL C_F_POINTER(LBLY_PTR,LBLY,(/ LONY /))
         ENDIF
         CALL C_F_POINTER(C11Y_PTR,C11Y,(/ C11Y_LEN /))
      ENDIF
      NULLIFY(IPBZ)
      NULLIFY(IPVZ)
      NULLIFY(BZ)
      IF(LL4Z.GT.0) THEN
         ALLOCATE(FZ(LL4Z))
         DO 30 I0=1,LL4Z
         FZ(I0)=F1(IOFZ+I0)
   30    CONTINUE
         CALL LCMGPD(IPTRK,'IPBBZ',IPBZ_PTR)
         CALL LCMLEN(IPSYS,'ZB',LENZB,ITYL)
         IF(LENZB.EQ.0) THEN
            CALL LCMGPD(IPTRK,'ZB',BZ_PTR)
         ELSE
            CALL LCMGPD(IPSYS,'ZB',BZ_PTR)
         ENDIF
         CALL C_F_POINTER(IPBZ_PTR,IPBZ,(/ 2*IELEM*LL4Z /))
         CALL C_F_POINTER(BZ_PTR,BZ,(/ 2*IELEM*LL4Z /))
         CALL LCMLEN(IPSYS,'ZI'//NAMT,C11Z_LEN,ITYLCM)
         CALL LCMGPD(IPSYS,'ZI'//NAMT,C11Z_PTR)
         IF(ISEG.EQ.0) THEN
*           SCALAR SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
            CALL LCMGPD(IPTRK,'MUZ',MUZ_PTR)
            CALL C_F_POINTER(MUZ_PTR,MUZ,(/ LL4Z /))
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
            CALL LCMGET(IPTRK,'LL4VZ',LL4VZ)
            CALL LCMGPD(IPTRK,'MUVZ',MUZ_PTR)
            CALL LCMGPD(IPTRK,'IPVZ',IPVZ_PTR)
            CALL LCMLEN(IPTRK,'NBLZ',LONZ,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLZ',NBLZ_PTR)
            CALL LCMGPD(IPTRK,'LBLZ',LBLZ_PTR)
            CALL C_F_POINTER(MUZ_PTR,MUZ,(/ LL4VZ/ISEG /))
            CALL C_F_POINTER(IPVZ_PTR,IPVZ,(/ LL4Z /))
            CALL C_F_POINTER(NBLZ_PTR,NBLZ,(/ LONZ /))
            CALL C_F_POINTER(LBLZ_PTR,LBLZ,(/ LONZ /))
         ENDIF
         CALL C_F_POINTER(C11Z_PTR,C11Z,(/ C11Z_LEN /))
      ENDIF
      ALLOCATE(FL(LL4F))
*----
*  W DIRECTION
*----
      IF(ISEG.GT.0) ALLOCATE(T(ISEG))
      DO 520 IADI=1,NADI
      IF(LL4W.GT.0) THEN
         DO 40 I0=1,LL4F
         FL(I0)=S1(I0)
   40    CONTINUE
         DO 60 I0=1,LL4X
         DO 50 J0=1,2*IELEM
         JJ=IPBX((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 60
         FL(JJ)=FL(JJ)-BX((I0-1)*2*IELEM+J0)*FX(I0)
   50    CONTINUE
   60    CONTINUE
         DO 80 I0=1,LL4Y
         DO 70 J0=1,2*IELEM
         JJ=IPBY((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 80
         FL(JJ)=FL(JJ)-BY((I0-1)*2*IELEM+J0)*FY(I0)
   70    CONTINUE
   80    CONTINUE
         DO 100 I0=1,LL4Z
         DO 90 J0=1,2*IELEM
         JJ=IPBZ((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 100
         FL(JJ)=FL(JJ)-BZ((I0-1)*2*IELEM+J0)*FZ(I0)
   90    CONTINUE
  100    CONTINUE
         DO 130 I0=1,LL4W
         GGW=-S1(IOFW+I0)
         DO 110 J0=1,2*IELEM
         JJ=IPBW((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 120
         GGW=GGW+BW((I0-1)*2*IELEM+J0)*FL(JJ)/TF(JJ)
  110    CONTINUE
  120    FW(I0)=GGW
  130    CONTINUE
*
*        PIOLAT TRANSFORM TERM.
         CALL FLDPWY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
     1   FY,FW)
         CALL FLDPWX(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,FX,FW)
         IF(ISEG.EQ.0) THEN
*           SCALAR SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
            CALL ALLDLS(LL4W,MUW,C11W,FW)
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
            ALLOCATE(GAR(LL4VW))
            GAR(:LL4VW)=0.0
            DO 140 I=1,LL4W
            GAR(IPVW(I))=FW(I)
  140       CONTINUE
            CALL ALVDLS(LTSW,MUW,C11W,GAR,ISEG,LONW,NBLW,LBLW,T)
            DO 150 I=1,LL4W
            FW(I)=GAR(IPVW(I))
  150       CONTINUE
            DEALLOCATE(GAR)
         ENDIF
      ENDIF
*----
*  X DIRECTION
*----
      DO 160 I0=1,LL4F
      FL(I0)=S1(I0)
  160 CONTINUE
      DO 180 I0=1,LL4W
      DO 170 J0=1,2*IELEM
      JJ=IPBW((I0-1)*2*IELEM+J0)
      IF(JJ.EQ.0) GO TO 180
      FL(JJ)=FL(JJ)-BW((I0-1)*2*IELEM+J0)*FW(I0)
  170 CONTINUE
  180 CONTINUE
      DO 200 I0=1,LL4Y
      DO 190 J0=1,2*IELEM
      JJ=IPBY((I0-1)*2*IELEM+J0)
      IF(JJ.EQ.0) GO TO 200
      FL(JJ)=FL(JJ)-BY((I0-1)*2*IELEM+J0)*FY(I0)
  190 CONTINUE
  200 CONTINUE
      DO 220 I0=1,LL4Z
      DO 210 J0=1,2*IELEM
      JJ=IPBZ((I0-1)*2*IELEM+J0)
      IF(JJ.EQ.0) GO TO 220
      FL(JJ)=FL(JJ)-BZ((I0-1)*2*IELEM+J0)*FZ(I0)
  210 CONTINUE
  220 CONTINUE
      DO 250 I0=1,LL4X
      GGX=-S1(IOFX+I0)
      DO 230 J0=1,2*IELEM
      JJ=IPBX((I0-1)*2*IELEM+J0)
      IF(JJ.EQ.0) GO TO 240
      GGX=GGX+BX((I0-1)*2*IELEM+J0)*FL(JJ)/TF(JJ)
  230 CONTINUE
  240 FX(I0)=GGX
  250 CONTINUE
      IF(LL4W.GT.0) THEN
*        PIOLAT TRANSFORM TERM.
         CALL FLDPXW(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,FW,FX)
         CALL FLDPXY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
     1   FY,FX)
      ENDIF
      IF(ISEG.EQ.0) THEN
*        SCALAR SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
         CALL ALLDLS(LL4X,MUX,C11X,FX)
      ELSE IF(ISEG.GT.0) THEN
*        SUPERVECTORIAL SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
         ALLOCATE(GAR(LL4VX))
         GAR(:LL4VX)=0.0
         DO 260 I=1,LL4X
         GAR(IPVX(I))=FX(I)
  260    CONTINUE
         CALL ALVDLS(LTSW,MUX,C11X,GAR,ISEG,LONX,NBLX,LBLX,T)
         DO 270 I=1,LL4X
         FX(I)=GAR(IPVX(I))
  270    CONTINUE
         DEALLOCATE(GAR)
      ENDIF
*----
*  Y DIRECTION
*----
      IF(LL4Y.GT.0) THEN
         DO 280 I0=1,LL4F
         FL(I0)=S1(I0)
  280    CONTINUE
         DO 300 I0=1,LL4W
         DO 290 J0=1,2*IELEM
         JJ=IPBW((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 300
         FL(JJ)=FL(JJ)-BW((I0-1)*2*IELEM+J0)*FW(I0)
  290    CONTINUE
  300    CONTINUE
         DO 320 I0=1,LL4X
         DO 310 J0=1,2*IELEM
         JJ=IPBX((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 320
         FL(JJ)=FL(JJ)-BX((I0-1)*2*IELEM+J0)*FX(I0)
  310    CONTINUE
  320    CONTINUE
         DO 340 I0=1,LL4Z
         DO 330 J0=1,2*IELEM
         JJ=IPBZ((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 340
         FL(JJ)=FL(JJ)-BZ((I0-1)*2*IELEM+J0)*FZ(I0)
  330    CONTINUE
  340    CONTINUE
         DO 370 I0=1,LL4Y
         GGY=-S1(IOFY+I0)
         DO 350 J0=1,2*IELEM
         JJ=IPBY((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 360
         GGY=GGY+BY((I0-1)*2*IELEM+J0)*FL(JJ)/TF(JJ)
  350    CONTINUE
  360    FY(I0)=GGY
  370    CONTINUE
         IF(LL4W.GT.0) THEN
*           PIOLAT TRANSFORM TERM.
            CALL FLDPYX(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
     1      DIFF,FX,FY)
            CALL FLDPYW(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
     1      DIFF,FW,FY)
         ENDIF
         IF(ISEG.EQ.0) THEN
*           SCALAR SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
            CALL ALLDLS(LL4Y,MUY,C11Y,FY)
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
            ALLOCATE(GAR(LL4VY))
            GAR(:LL4VY)=0.0
            DO 380 I=1,LL4Y
            GAR(IPVY(I))=FY(I)
  380       CONTINUE
            CALL ALVDLS(LTSW,MUY,C11Y,GAR,ISEG,LONY,NBLY,LBLY,T)
            DO 390 I=1,LL4Y
            FY(I)=GAR(IPVY(I))
  390       CONTINUE
            DEALLOCATE(GAR)
         ENDIF
      ENDIF
*----
*  Z DIRECTION
*----
      IF(LL4Z.GT.0) THEN
         DO 400 I0=1,LL4F
         FL(I0)=S1(I0)
  400    CONTINUE
         DO 420 I0=1,LL4W
         DO 410 J0=1,2*IELEM
         JJ=IPBW((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 420
         FL(JJ)=FL(JJ)-BW((I0-1)*2*IELEM+J0)*FW(I0)
  410    CONTINUE
  420    CONTINUE
         DO 440 I0=1,LL4X
         DO 430 J0=1,2*IELEM
         JJ=IPBX((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 440
         FL(JJ)=FL(JJ)-BX((I0-1)*2*IELEM+J0)*FX(I0)
  430    CONTINUE
  440    CONTINUE
         DO 460 I0=1,LL4Y
         DO 450 J0=1,2*IELEM
         JJ=IPBY((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 460
         FL(JJ)=FL(JJ)-BY((I0-1)*2*IELEM+J0)*FY(I0)
  450    CONTINUE
  460    CONTINUE
         DO 490 I0=1,LL4Z
         GGZ=-S1(IOFZ+I0)
         DO 470 J0=1,2*IELEM
         JJ=IPBZ((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 480
         GGZ=GGZ+BZ((I0-1)*2*IELEM+J0)*FL(JJ)/TF(JJ)
  470    CONTINUE
  480    FZ(I0)=GGZ
  490    CONTINUE
         IF(ISEG.EQ.0) THEN
*           SCALAR SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
            CALL ALLDLS(LL4Z,MUZ,C11Z,FZ)
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
            ALLOCATE(GAR(LL4VZ))
            GAR(:LL4VZ)=0.0
            DO 500 I=1,LL4Z
            GAR(IPVZ(I))=FZ(I)
  500       CONTINUE
            CALL ALVDLS(LTSW,MUZ,C11Z,GAR,ISEG,LONZ,NBLZ,LBLZ,T)
            DO 510 I=1,LL4Z
            FZ(I)=GAR(IPVZ(I))
  510       CONTINUE
            DEALLOCATE(GAR)
         ENDIF
      ENDIF
  520 CONTINUE
      IF(ISEG.GT.0) DEALLOCATE(T)
      DEALLOCATE(FL)
*----
*  COMPUTE FLUX AND RECOVER CURRENTS
*----
      DO 530 I0=1,LL4F
      F1(I0)=S1(I0)
  530 CONTINUE
      DO 550 J0=1,LL4W
      DO 540 I0=1,2*IELEM
      II=IPBW((J0-1)*2*IELEM+I0)
      IF(II.EQ.0) GO TO 550
      F1(II)=F1(II)-BW((J0-1)*2*IELEM+I0)*FW(J0)
  540 CONTINUE
  550 CONTINUE
      DO 570 J0=1,LL4X
      DO 560 I0=1,2*IELEM
      II=IPBX((J0-1)*2*IELEM+I0)
      IF(II.EQ.0) GO TO 570
      F1(II)=F1(II)-BX((J0-1)*2*IELEM+I0)*FX(J0)
  560 CONTINUE
  570 CONTINUE
      DO 590 J0=1,LL4Y
      DO 580 I0=1,2*IELEM
      II=IPBY((J0-1)*2*IELEM+I0)
      IF(II.EQ.0) GO TO 590
      F1(II)=F1(II)-BY((J0-1)*2*IELEM+I0)*FY(J0)
  580 CONTINUE
  590 CONTINUE
      DO 610 J0=1,LL4Z
      DO 600 I0=1,2*IELEM
      II=IPBZ((J0-1)*2*IELEM+I0)
      IF(II.EQ.0) GO TO 610
      F1(II)=F1(II)-BZ((J0-1)*2*IELEM+I0)*FZ(J0)
  600 CONTINUE
  610 CONTINUE
      DO 620 I0=1,LL4F
      F1(I0)=F1(I0)/TF(I0)
  620 CONTINUE
      IF(LL4W.GT.0) THEN
         DO 630 I0=1,LL4W
         F1(IOFW+I0)=FW(I0)
  630    CONTINUE
         DEALLOCATE(FW)
      ENDIF
      DO 640 I0=1,LL4X
      F1(IOFX+I0)=FX(I0)
  640 CONTINUE
      DEALLOCATE(FX)
      IF(LL4Y.GT.0) THEN
         DO 650 I0=1,LL4Y
         F1(IOFY+I0)=FY(I0)
  650    CONTINUE
         DEALLOCATE(FY)
      ENDIF
      IF(LL4Z.GT.0) THEN
         DO 660 I0=1,LL4Z
         F1(IOFZ+I0)=FZ(I0)
  660    CONTINUE
         DEALLOCATE(FZ)
      ENDIF
      RETURN
      END