1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
*DECK FLDTRM
SUBROUTINE FLDTRM(NAMP,IPTRK,IPSYS,LL4,F2,F3)
*
*-----------------------------------------------------------------------
*
*Purpose:
* LCM driver for the multiplication of a matrix by a vector. Special
* version for Thomas-Raviart or Thomas-Raviart-Schneider basis.
*
*Copyright:
* Copyright (C) 2006 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NAMP name of the coefficient matrix.
* IPTRK L_TRACK pointer to the tracking information.
* IPSYS L_SYSTEM pointer to system matrices.
* LL4 order of the matrix.
* F2 vector to multiply.
*
*Parameters: output
* F3 result of the multiplication.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPSYS
CHARACTER NAMP*12
INTEGER LL4
REAL F2(LL4),F3(LL4)
*----
* LOCAL VARIABLES
*----
PARAMETER (NSTATE=40)
CHARACTER NAMT*12
INTEGER ITP(NSTATE),ITS(NSTATE)
LOGICAL LMUX,DIAG
INTEGER ASS_LEN
REAL, DIMENSION(:), ALLOCATABLE :: GAR,GAF
INTEGER, DIMENSION(:), POINTER :: KN,IPERT,IPBW,MUW,IPVW,NBLW,
1 LBLW,IPBX,MUX,IPVX,NBLX,LBLX,IPBY,MUY,IPVY,NBLY,LBLY,IPBZ,MUZ,
2 IPVZ,NBLZ,LBLZ
REAL, DIMENSION(:), POINTER :: TF,DIFF,AW,BW,AX,BX,AY,BY,AZ,BZ
DOUBLE PRECISION, DIMENSION(:), POINTER :: CTRAN
TYPE(C_PTR) KN_PTR,IPERT_PTR,DIFF_PTR,TF_PTR,CTRAN_PTR,
1 AW_PTR,BW_PTR,IPBW_PTR,MUW_PTR,IPVW_PTR,NBLW_PTR,LBLW_PTR,
2 AX_PTR,BX_PTR,IPBX_PTR,MUX_PTR,IPVX_PTR,NBLX_PTR,LBLX_PTR,
3 AY_PTR,BY_PTR,IPBY_PTR,MUY_PTR,IPVY_PTR,NBLY_PTR,LBLY_PTR,
4 AZ_PTR,BZ_PTR,IPBZ_PTR,MUZ_PTR,IPVZ_PTR,NBLZ_PTR,LBLZ_PTR
*----
* INITIALIZATION
*----
NAMT=NAMP
CALL LCMGET(IPTRK,'STATE-VECTOR',ITP)
IELEM=ITP(9)
ISEG=ITP(17)
LTSW=ITP(19)
LL4F=ITP(25)
LL4W=ITP(26)
LL4X=ITP(27)
LL4Y=ITP(28)
LL4Z=ITP(29)
NLF=ITP(30)
IOFW=LL4F
IOFX=LL4F+LL4W
IOFY=LL4F+LL4W+LL4X
IOFZ=LL4F+LL4W+LL4X+LL4Y
CALL LCMLEN(IPTRK,'MUX',IDUM,ITYLCM)
LMUX=(IDUM.NE.0).AND.(ITYLCM.EQ.1)
DIAG=(LL4Y.GT.0).AND.(.NOT.LMUX)
CALL LCMGPD(IPSYS,'TF'//NAMT,TF_PTR)
CALL C_F_POINTER(TF_PTR,TF,(/ LL4F*NLF/2 /))
*----
* RECOVER THE PERTURBATION FLAG.
*----
CALL LCMGET(IPSYS,'STATE-VECTOR',ITS)
IPR=ITS(9)
*
NULLIFY(IPBW)
NULLIFY(BW)
IF(LL4W.GT.0) THEN
ISPLH=ITP(13)
LX=ITP(14)
LZ=ITP(16)
NBLOS=LX*LZ/3
CALL LCMLEN(IPTRK,'KN',MAXKN,ITYLCM)
CALL LCMGPD(IPTRK,'CTRAN',CTRAN_PTR)
CALL LCMGPD(IPTRK,'KN',KN_PTR)
CALL LCMGPD(IPTRK,'IPERT',IPERT_PTR)
CALL LCMGPD(IPSYS,'DIFF'//NAMT,DIFF_PTR)
CALL C_F_POINTER(CTRAN_PTR,CTRAN,(/ ((IELEM+1)*IELEM)**2 /))
CALL C_F_POINTER(KN_PTR,KN,(/ MAXKN /))
CALL C_F_POINTER(IPERT_PTR,IPERT,(/ NBLOS /))
CALL C_F_POINTER(DIFF_PTR,DIFF,(/ NBLOS /))
*
CALL LCMGPD(IPSYS,'WA'//NAMT,AW_PTR)
CALL LCMGPD(IPTRK,'IPBBW',IPBW_PTR)
CALL LCMGPD(IPTRK,'WB',BW_PTR)
CALL C_F_POINTER(IPBW_PTR,IPBW,(/ 2*IELEM*LL4W /))
CALL C_F_POINTER(BW_PTR,BW,(/ 2*IELEM*LL4W /))
IF(ISEG.EQ.0) THEN
* SCALAR MULTIPLICATION FOR A W-ORIENTED MATRIX.
CALL LCMGPD(IPTRK,'MUW',MUW_PTR)
CALL C_F_POINTER(MUW_PTR,MUW,(/ LL4W /))
CALL C_F_POINTER(AW_PTR,AW,(/ MUW(LL4W) /))
CALL ALLDLM(LL4W,AW,F2(IOFW+1),F3(IOFW+1),MUW,1)
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL MULTIPLICATION FOR A W-ORIENTED MATRIX.
CALL LCMGET(IPTRK,'LL4VW',LL4VW)
CALL LCMGPD(IPTRK,'MUVW',MUW_PTR)
CALL LCMGPD(IPTRK,'IPVW',IPVW_PTR)
CALL LCMLEN(IPTRK,'NBLW',LONW,ITYLCM)
CALL LCMGPD(IPTRK,'NBLW',NBLW_PTR)
CALL LCMGPD(IPTRK,'LBLW',LBLW_PTR)
CALL C_F_POINTER(MUW_PTR,MUW,(/ LL4VW/ISEG /))
CALL C_F_POINTER(IPVW_PTR,IPVW,(/ LL4W /))
CALL C_F_POINTER(NBLW_PTR,NBLW,(/ LONW /))
CALL C_F_POINTER(LBLW_PTR,LBLW,(/ LONW /))
CALL LCMLEN(IPSYS,'WA'//NAMT,ASS_LEN,ITYLCM)
CALL C_F_POINTER(AW_PTR,AW,(/ ASS_LEN /))
ALLOCATE(GAR(LL4VW),GAF(LL4VW))
GAR(:LL4VW)=0.0
DO 20 I=1,LL4W
GAR(IPVW(I))=F2(IOFW+I)
20 CONTINUE
CALL C_F_POINTER(AW_PTR,AW,(/ ISEG*MUW(LL4VW) /))
CALL ALVDLM(LTSW,AW,GAR,GAF,MUW,1,ISEG,LONW,NBLW,LBLW)
DO 30 I=1,LL4W
F3(IOFW+I)=GAF(IPVW(I))
30 CONTINUE
DEALLOCATE(GAF,GAR)
ENDIF
IF((IPR.NE.1).AND.(IPR.NE.2)) THEN
DO 55 I=1,LL4W
GG=F3(IOFW+I)
DO 40 J=1,2*IELEM
II=IPBW((I-1)*2*IELEM+J)
IF(II.EQ.0) GO TO 50
GG=GG+BW((I-1)*2*IELEM+J)*F2(II)
40 CONTINUE
50 F3(IOFW+I)=GG
55 CONTINUE
ENDIF
*
* PIOLAT TRANSFORM TERM.
CALL FLDPWY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
1 DIFF,F2(IOFY+1),F3(IOFW+1))
CALL FLDPWX(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
1 F2(IOFX+1),F3(IOFW+1))
ENDIF
*
IF(DIAG) THEN
CALL LCMGPD(IPSYS,'YA'//NAMT,AX_PTR)
ELSE
CALL LCMGPD(IPSYS,'XA'//NAMT,AX_PTR)
ENDIF
CALL LCMGPD(IPTRK,'IPBBX',IPBX_PTR)
CALL LCMGPD(IPTRK,'XB',BX_PTR)
CALL C_F_POINTER(IPBX_PTR,IPBX,(/ 2*IELEM*LL4X /))
CALL C_F_POINTER(BX_PTR,BX,(/ 2*IELEM*LL4X /))
IF(ISEG.EQ.0) THEN
* SCALAR MULTIPLICATION FOR A X-ORIENTED MATRIX.
IF(DIAG) THEN
CALL LCMGPD(IPTRK,'MUY',MUX_PTR)
ELSE
CALL LCMGPD(IPTRK,'MUX',MUX_PTR)
ENDIF
CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4X /))
CALL C_F_POINTER(AX_PTR,AX,(/ MUX(LL4X) /))
CALL ALLDLM(LL4X,AX,F2(IOFX+1),F3(IOFX+1),MUX,1)
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL MULTIPLICATION FOR A X-ORIENTED MATRIX.
IF(DIAG) THEN
CALL LCMGET(IPTRK,'LL4VY',LL4VX)
CALL LCMGPD(IPTRK,'MUVY',MUX_PTR)
CALL LCMGPD(IPTRK,'IPVY',IPVX_PTR)
CALL LCMLEN(IPTRK,'NBLY',LONX,ITYLCM)
CALL LCMGPD(IPTRK,'NBLY',NBLX_PTR)
CALL LCMGPD(IPTRK,'LBLY',LBLX_PTR)
ELSE
CALL LCMGET(IPTRK,'LL4VX',LL4VX)
CALL LCMGPD(IPTRK,'MUVX',MUX_PTR)
CALL LCMGPD(IPTRK,'IPVX',IPVX_PTR)
CALL LCMLEN(IPTRK,'NBLX',LONX,ITYLCM)
CALL LCMGPD(IPTRK,'NBLX',NBLX_PTR)
CALL LCMGPD(IPTRK,'LBLX',LBLX_PTR)
ENDIF
CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4VX/ISEG /))
CALL C_F_POINTER(IPVX_PTR,IPVX,(/ LL4X /))
CALL C_F_POINTER(NBLX_PTR,NBLX,(/ LONX /))
CALL C_F_POINTER(LBLX_PTR,LBLX,(/ LONX /))
CALL LCMLEN(IPSYS,'XA'//NAMT,ASS_LEN,ITYLCM)
CALL C_F_POINTER(AX_PTR,AX,(/ ASS_LEN /))
ALLOCATE(GAR(LL4VX),GAF(LL4VX))
GAR(:LL4VX)=0.0
DO 70 I=1,LL4X
GAR(IPVX(I))=F2(IOFX+I)
70 CONTINUE
CALL ALVDLM(LTSW,AX,GAR,GAF,MUX,1,ISEG,LONX,NBLX,LBLX)
DO 80 I=1,LL4X
F3(IOFX+I)=GAF(IPVX(I))
80 CONTINUE
DEALLOCATE(GAF,GAR)
ENDIF
IF((IPR.NE.1).AND.(IPR.NE.2)) THEN
DO 105 I=1,LL4X
GG=F3(IOFX+I)
DO 90 J=1,2*IELEM
II=IPBX((I-1)*2*IELEM+J)
IF(II.EQ.0) GO TO 100
GG=GG+BX((I-1)*2*IELEM+J)*F2(II)
90 CONTINUE
100 F3(IOFX+I)=GG
105 CONTINUE
ENDIF
*
IF(LL4W.GT.0) THEN
* PIOLAT TRANSFORM TERM.
CALL FLDPXW(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
1 F2(IOFW+1),F3(IOFX+1))
CALL FLDPXY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
1 DIFF,F2(IOFY+1),F3(IOFX+1))
ENDIF
*
NULLIFY(IPBY)
NULLIFY(BY)
IF(LL4Y.GT.0) THEN
CALL LCMGPD(IPSYS,'YA'//NAMT,AY_PTR)
CALL LCMGPD(IPTRK,'IPBBY',IPBY_PTR)
CALL LCMGPD(IPTRK,'YB',BY_PTR)
CALL C_F_POINTER(IPBY_PTR,IPBY,(/ 2*IELEM*LL4Y /))
CALL C_F_POINTER(BY_PTR,BY,(/ 2*IELEM*LL4Y /))
IF(ISEG.EQ.0) THEN
* SCALAR MULTIPLICATION FOR A Y-ORIENTED MATRIX.
CALL LCMGPD(IPTRK,'MUY',MUY_PTR)
CALL C_F_POINTER(MUY_PTR,MUY,(/ LL4Y /))
CALL C_F_POINTER(AY_PTR,AY,(/ MUY(LL4Y) /))
CALL ALLDLM(LL4Y,AY,F2(IOFY+1),F3(IOFY+1),MUY,1)
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL MULTIPLICATION FOR A Y-ORIENTED MATRIX.
CALL LCMGET(IPTRK,'LL4VY',LL4VY)
CALL LCMGPD(IPTRK,'MUVY',MUY_PTR)
CALL LCMGPD(IPTRK,'IPVY',IPVY_PTR)
CALL LCMLEN(IPTRK,'NBLY',LONY,ITYLCM)
CALL LCMGPD(IPTRK,'NBLY',NBLY_PTR)
CALL LCMGPD(IPTRK,'LBLY',LBLY_PTR)
CALL C_F_POINTER(MUY_PTR,MUY,(/ LL4VY/ISEG /))
CALL C_F_POINTER(IPVY_PTR,IPVY,(/ LL4Y /))
CALL C_F_POINTER(NBLY_PTR,NBLY,(/ LONY /))
CALL C_F_POINTER(LBLY_PTR,LBLY,(/ LONY /))
CALL LCMLEN(IPSYS,'YA'//NAMT,ASS_LEN,ITYLCM)
CALL C_F_POINTER(AY_PTR,AY,(/ ASS_LEN /))
ALLOCATE(GAR(LL4VY),GAF(LL4VY))
GAR(:LL4VY)=0.0
DO 120 I=1,LL4Y
GAR(IPVY(I))=F2(IOFY+I)
120 CONTINUE
CALL ALVDLM(LTSW,AY,GAR,GAF,MUY,1,ISEG,LONY,NBLY,LBLY)
DO 130 I=1,LL4Y
F3(IOFY+I)=GAF(IPVY(I))
130 CONTINUE
DEALLOCATE(GAF,GAR)
ENDIF
IF((IPR.NE.1).AND.(IPR.NE.2)) THEN
DO 155 I=1,LL4Y
GG=F3(IOFY+I)
DO 140 J=1,2*IELEM
II=IPBY((I-1)*2*IELEM+J)
IF(II.EQ.0) GO TO 150
GG=GG+BY((I-1)*2*IELEM+J)*F2(II)
140 CONTINUE
150 F3(IOFY+I)=GG
155 CONTINUE
ENDIF
*
IF(LL4W.GT.0) THEN
* PIOLAT TRANSFORM TERM.
CALL FLDPYX(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
1 DIFF,F2(IOFX+1),F3(IOFY+1))
CALL FLDPYW(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
1 DIFF,F2(IOFW+1),F3(IOFY+1))
ENDIF
ENDIF
*
NULLIFY(IPBZ)
NULLIFY(BZ)
IF(LL4Z.GT.0) THEN
CALL LCMGPD(IPSYS,'ZA'//NAMT,AZ_PTR)
CALL LCMGPD(IPTRK,'IPBBZ',IPBZ_PTR)
CALL LCMGPD(IPTRK,'ZB',BZ_PTR)
CALL C_F_POINTER(IPBZ_PTR,IPBZ,(/ 2*IELEM*LL4Z /))
CALL C_F_POINTER(BZ_PTR,BZ,(/ 2*IELEM*LL4Z /))
IF(ISEG.EQ.0) THEN
* SCALAR MULTIPLICATION FOR A Y-ORIENTED MATRIX.
CALL LCMGPD(IPTRK,'MUZ',MUZ_PTR)
CALL C_F_POINTER(MUZ_PTR,MUZ,(/ LL4Z /))
CALL C_F_POINTER(AZ_PTR,AZ,(/ MUZ(LL4Z) /))
CALL ALLDLM(LL4Z,AZ,F2(IOFZ+1),F3(IOFZ+1),MUZ,1)
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL MULTIPLICATION FOR A Z-ORIENTED MATRIX.
CALL LCMGET(IPTRK,'LL4VZ',LL4VZ)
CALL LCMGPD(IPTRK,'MUVZ',MUZ_PTR)
CALL LCMGPD(IPTRK,'IPVZ',IPVZ_PTR)
CALL LCMLEN(IPTRK,'NBLZ',LONZ,ITYLCM)
CALL LCMGPD(IPTRK,'NBLZ',NBLZ_PTR)
CALL LCMGPD(IPTRK,'LBLZ',LBLZ_PTR)
CALL C_F_POINTER(MUZ_PTR,MUZ,(/ LL4VZ/ISEG /))
CALL C_F_POINTER(IPVZ_PTR,IPVZ,(/ LL4Z /))
CALL C_F_POINTER(NBLZ_PTR,NBLZ,(/ LONZ /))
CALL C_F_POINTER(LBLZ_PTR,LBLZ,(/ LONZ /))
CALL LCMLEN(IPSYS,'ZA'//NAMT,ASS_LEN,ITYLCM)
CALL C_F_POINTER(AZ_PTR,AZ,(/ ASS_LEN /))
ALLOCATE(GAR(LL4VZ),GAF(LL4VZ))
GAR(:LL4VZ)=0.0
DO 170 I=1,LL4Z
GAR(IPVZ(I))=F2(IOFZ+1)
170 CONTINUE
CALL ALVDLM(LTSW,AZ,GAR,GAF,MUZ,1,ISEG,LONZ,NBLZ,LBLZ)
DO 180 I=1,LL4Z
F3(IOFZ+I)=GAF(IPVZ(I))
180 CONTINUE
DEALLOCATE(GAF,GAR)
ENDIF
IF((IPR.NE.1).AND.(IPR.NE.2)) THEN
DO 205 I=1,LL4Z
GG=F3(IOFZ+I)
DO 190 J=1,2*IELEM
II=IPBZ((I-1)*2*IELEM+J)
IF(II.EQ.0) GO TO 200
GG=GG+BZ((I-1)*2*IELEM+J)*F2(II)
190 CONTINUE
200 F3(IOFZ+I)=GG
205 CONTINUE
ENDIF
ENDIF
*
DO 210 I=1,LL4F
F3(I)=TF(I)*F2(I)
210 CONTINUE
IF((IPR.NE.1).AND.(IPR.NE.2)) THEN
DO 230 I=1,LL4W
DO 220 J=1,2*IELEM
II=IPBW((I-1)*2*IELEM+J)
IF(II.EQ.0) GO TO 230
F3(II)=F3(II)+BW((I-1)*2*IELEM+J)*F2(IOFW+I)
220 CONTINUE
230 CONTINUE
DO 250 I=1,LL4X
DO 240 J=1,2*IELEM
II=IPBX((I-1)*2*IELEM+J)
IF(II.EQ.0) GO TO 250
F3(II)=F3(II)+BX((I-1)*2*IELEM+J)*F2(IOFX+I)
240 CONTINUE
250 CONTINUE
DO 270 I=1,LL4Y
DO 260 J=1,2*IELEM
II=IPBY((I-1)*2*IELEM+J)
IF(II.EQ.0) GO TO 270
F3(II)=F3(II)+BY((I-1)*2*IELEM+J)*F2(IOFY+I)
260 CONTINUE
270 CONTINUE
DO 290 I=1,LL4Z
DO 280 J=1,2*IELEM
II=IPBZ((I-1)*2*IELEM+J)
IF(II.EQ.0) GO TO 290
F3(II)=F3(II)+BZ((I-1)*2*IELEM+J)*F2(IOFZ+I)
280 CONTINUE
290 CONTINUE
ENDIF
RETURN
END
|