summaryrefslogtreecommitdiff
path: root/Trivac/src/FLDTRM.f
blob: c39f87a179fa7411778a57e25ebf378ef3ec65e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
*DECK FLDTRM
      SUBROUTINE FLDTRM(NAMP,IPTRK,IPSYS,LL4,F2,F3)
*
*-----------------------------------------------------------------------
*
*Purpose:
* LCM driver for the multiplication of a matrix by a vector. Special
* version for Thomas-Raviart or Thomas-Raviart-Schneider basis.
*
*Copyright:
* Copyright (C) 2006 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NAMP    name of the coefficient matrix.
* IPTRK   L_TRACK pointer to the tracking information.
* IPSYS   L_SYSTEM pointer to system matrices.
* LL4     order of the matrix.
* F2      vector to multiply.
*
*Parameters: output
* F3      result of the multiplication.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPTRK,IPSYS
      CHARACTER NAMP*12
      INTEGER LL4
      REAL F2(LL4),F3(LL4)
*----
*  LOCAL VARIABLES
*----
      PARAMETER (NSTATE=40)
      CHARACTER NAMT*12
      INTEGER ITP(NSTATE),ITS(NSTATE)
      LOGICAL LMUX,DIAG
      INTEGER ASS_LEN
      REAL, DIMENSION(:), ALLOCATABLE :: GAR,GAF
      INTEGER, DIMENSION(:), POINTER :: KN,IPERT,IPBW,MUW,IPVW,NBLW,
     1 LBLW,IPBX,MUX,IPVX,NBLX,LBLX,IPBY,MUY,IPVY,NBLY,LBLY,IPBZ,MUZ,
     2 IPVZ,NBLZ,LBLZ
      REAL, DIMENSION(:), POINTER :: TF,DIFF,AW,BW,AX,BX,AY,BY,AZ,BZ
      DOUBLE PRECISION, DIMENSION(:), POINTER :: CTRAN
      TYPE(C_PTR) KN_PTR,IPERT_PTR,DIFF_PTR,TF_PTR,CTRAN_PTR,
     1 AW_PTR,BW_PTR,IPBW_PTR,MUW_PTR,IPVW_PTR,NBLW_PTR,LBLW_PTR,
     2 AX_PTR,BX_PTR,IPBX_PTR,MUX_PTR,IPVX_PTR,NBLX_PTR,LBLX_PTR,
     3 AY_PTR,BY_PTR,IPBY_PTR,MUY_PTR,IPVY_PTR,NBLY_PTR,LBLY_PTR,
     4 AZ_PTR,BZ_PTR,IPBZ_PTR,MUZ_PTR,IPVZ_PTR,NBLZ_PTR,LBLZ_PTR
*----
*  INITIALIZATION
*----
      NAMT=NAMP
      CALL LCMGET(IPTRK,'STATE-VECTOR',ITP)
      IELEM=ITP(9)
      ISEG=ITP(17)
      LTSW=ITP(19)
      LL4F=ITP(25)
      LL4W=ITP(26)
      LL4X=ITP(27)
      LL4Y=ITP(28)
      LL4Z=ITP(29)
      NLF=ITP(30)
      IOFW=LL4F
      IOFX=LL4F+LL4W
      IOFY=LL4F+LL4W+LL4X
      IOFZ=LL4F+LL4W+LL4X+LL4Y
      CALL LCMLEN(IPTRK,'MUX',IDUM,ITYLCM)
      LMUX=(IDUM.NE.0).AND.(ITYLCM.EQ.1)
      DIAG=(LL4Y.GT.0).AND.(.NOT.LMUX)
      CALL LCMGPD(IPSYS,'TF'//NAMT,TF_PTR)
      CALL C_F_POINTER(TF_PTR,TF,(/ LL4F*NLF/2 /))
*----
*  RECOVER THE PERTURBATION FLAG.
*----
      CALL LCMGET(IPSYS,'STATE-VECTOR',ITS)
      IPR=ITS(9)
*
      NULLIFY(IPBW)
      NULLIFY(BW)
      IF(LL4W.GT.0) THEN
         ISPLH=ITP(13)
         LX=ITP(14)
         LZ=ITP(16)
         NBLOS=LX*LZ/3
         CALL LCMLEN(IPTRK,'KN',MAXKN,ITYLCM)
         CALL LCMGPD(IPTRK,'CTRAN',CTRAN_PTR)
         CALL LCMGPD(IPTRK,'KN',KN_PTR)
         CALL LCMGPD(IPTRK,'IPERT',IPERT_PTR)
         CALL LCMGPD(IPSYS,'DIFF'//NAMT,DIFF_PTR)
         CALL C_F_POINTER(CTRAN_PTR,CTRAN,(/ ((IELEM+1)*IELEM)**2 /))
         CALL C_F_POINTER(KN_PTR,KN,(/ MAXKN /))
         CALL C_F_POINTER(IPERT_PTR,IPERT,(/ NBLOS /))
         CALL C_F_POINTER(DIFF_PTR,DIFF,(/ NBLOS /))
*
         CALL LCMGPD(IPSYS,'WA'//NAMT,AW_PTR)
         CALL LCMGPD(IPTRK,'IPBBW',IPBW_PTR)
         CALL LCMGPD(IPTRK,'WB',BW_PTR)
         CALL C_F_POINTER(IPBW_PTR,IPBW,(/ 2*IELEM*LL4W /))
         CALL C_F_POINTER(BW_PTR,BW,(/ 2*IELEM*LL4W /))
         IF(ISEG.EQ.0) THEN
*           SCALAR MULTIPLICATION FOR A W-ORIENTED MATRIX.
            CALL LCMGPD(IPTRK,'MUW',MUW_PTR)
            CALL C_F_POINTER(MUW_PTR,MUW,(/ LL4W /))
            CALL C_F_POINTER(AW_PTR,AW,(/ MUW(LL4W) /))
            CALL ALLDLM(LL4W,AW,F2(IOFW+1),F3(IOFW+1),MUW,1)
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL MULTIPLICATION FOR A W-ORIENTED MATRIX.
            CALL LCMGET(IPTRK,'LL4VW',LL4VW)
            CALL LCMGPD(IPTRK,'MUVW',MUW_PTR)
            CALL LCMGPD(IPTRK,'IPVW',IPVW_PTR)
            CALL LCMLEN(IPTRK,'NBLW',LONW,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLW',NBLW_PTR)
            CALL LCMGPD(IPTRK,'LBLW',LBLW_PTR)
            CALL C_F_POINTER(MUW_PTR,MUW,(/ LL4VW/ISEG /))
            CALL C_F_POINTER(IPVW_PTR,IPVW,(/ LL4W /))
            CALL C_F_POINTER(NBLW_PTR,NBLW,(/ LONW /))
            CALL C_F_POINTER(LBLW_PTR,LBLW,(/ LONW /))
            CALL LCMLEN(IPSYS,'WA'//NAMT,ASS_LEN,ITYLCM)
            CALL C_F_POINTER(AW_PTR,AW,(/ ASS_LEN /))
            ALLOCATE(GAR(LL4VW),GAF(LL4VW))
            GAR(:LL4VW)=0.0
            DO 20 I=1,LL4W
            GAR(IPVW(I))=F2(IOFW+I)
   20       CONTINUE
            CALL C_F_POINTER(AW_PTR,AW,(/ ISEG*MUW(LL4VW) /))
            CALL ALVDLM(LTSW,AW,GAR,GAF,MUW,1,ISEG,LONW,NBLW,LBLW)
            DO 30 I=1,LL4W
            F3(IOFW+I)=GAF(IPVW(I))
   30       CONTINUE
            DEALLOCATE(GAF,GAR)
         ENDIF
         IF((IPR.NE.1).AND.(IPR.NE.2)) THEN
            DO 55 I=1,LL4W
            GG=F3(IOFW+I)
            DO 40 J=1,2*IELEM
            II=IPBW((I-1)*2*IELEM+J)
            IF(II.EQ.0) GO TO 50
            GG=GG+BW((I-1)*2*IELEM+J)*F2(II)
   40       CONTINUE
   50       F3(IOFW+I)=GG
   55       CONTINUE
         ENDIF
*
*        PIOLAT TRANSFORM TERM.
         CALL FLDPWY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
     1   DIFF,F2(IOFY+1),F3(IOFW+1))
         CALL FLDPWX(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
     1   F2(IOFX+1),F3(IOFW+1))
      ENDIF
*
      IF(DIAG) THEN
         CALL LCMGPD(IPSYS,'YA'//NAMT,AX_PTR)
      ELSE
         CALL LCMGPD(IPSYS,'XA'//NAMT,AX_PTR)
      ENDIF
      CALL LCMGPD(IPTRK,'IPBBX',IPBX_PTR)
      CALL LCMGPD(IPTRK,'XB',BX_PTR)
      CALL C_F_POINTER(IPBX_PTR,IPBX,(/ 2*IELEM*LL4X /))
      CALL C_F_POINTER(BX_PTR,BX,(/ 2*IELEM*LL4X /))
      IF(ISEG.EQ.0) THEN
*        SCALAR MULTIPLICATION FOR A X-ORIENTED MATRIX.
         IF(DIAG) THEN
            CALL LCMGPD(IPTRK,'MUY',MUX_PTR)
         ELSE
            CALL LCMGPD(IPTRK,'MUX',MUX_PTR)
         ENDIF
         CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4X /))
         CALL C_F_POINTER(AX_PTR,AX,(/ MUX(LL4X) /))
         CALL ALLDLM(LL4X,AX,F2(IOFX+1),F3(IOFX+1),MUX,1)
      ELSE IF(ISEG.GT.0) THEN
*        SUPERVECTORIAL MULTIPLICATION FOR A X-ORIENTED MATRIX.
         IF(DIAG) THEN
            CALL LCMGET(IPTRK,'LL4VY',LL4VX)
            CALL LCMGPD(IPTRK,'MUVY',MUX_PTR)
            CALL LCMGPD(IPTRK,'IPVY',IPVX_PTR)
            CALL LCMLEN(IPTRK,'NBLY',LONX,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLY',NBLX_PTR)
            CALL LCMGPD(IPTRK,'LBLY',LBLX_PTR)
         ELSE
            CALL LCMGET(IPTRK,'LL4VX',LL4VX)
            CALL LCMGPD(IPTRK,'MUVX',MUX_PTR)
            CALL LCMGPD(IPTRK,'IPVX',IPVX_PTR)
            CALL LCMLEN(IPTRK,'NBLX',LONX,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLX',NBLX_PTR)
            CALL LCMGPD(IPTRK,'LBLX',LBLX_PTR)
         ENDIF
         CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4VX/ISEG /))
         CALL C_F_POINTER(IPVX_PTR,IPVX,(/ LL4X /))
         CALL C_F_POINTER(NBLX_PTR,NBLX,(/ LONX /))
         CALL C_F_POINTER(LBLX_PTR,LBLX,(/ LONX /))
         CALL LCMLEN(IPSYS,'XA'//NAMT,ASS_LEN,ITYLCM)
         CALL C_F_POINTER(AX_PTR,AX,(/ ASS_LEN /))
         ALLOCATE(GAR(LL4VX),GAF(LL4VX))
         GAR(:LL4VX)=0.0
         DO 70 I=1,LL4X
         GAR(IPVX(I))=F2(IOFX+I)
   70    CONTINUE
         CALL ALVDLM(LTSW,AX,GAR,GAF,MUX,1,ISEG,LONX,NBLX,LBLX)
         DO 80 I=1,LL4X
         F3(IOFX+I)=GAF(IPVX(I))
   80    CONTINUE
         DEALLOCATE(GAF,GAR)
      ENDIF
      IF((IPR.NE.1).AND.(IPR.NE.2)) THEN
         DO 105 I=1,LL4X
         GG=F3(IOFX+I)
         DO 90 J=1,2*IELEM
         II=IPBX((I-1)*2*IELEM+J)
         IF(II.EQ.0) GO TO 100
         GG=GG+BX((I-1)*2*IELEM+J)*F2(II)
   90    CONTINUE
  100    F3(IOFX+I)=GG
  105    CONTINUE
      ENDIF
*
      IF(LL4W.GT.0) THEN
*        PIOLAT TRANSFORM TERM.
         CALL FLDPXW(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
     1   F2(IOFW+1),F3(IOFX+1))
         CALL FLDPXY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
     1   DIFF,F2(IOFY+1),F3(IOFX+1))
      ENDIF
*
      NULLIFY(IPBY)
      NULLIFY(BY)
      IF(LL4Y.GT.0) THEN
         CALL LCMGPD(IPSYS,'YA'//NAMT,AY_PTR)
         CALL LCMGPD(IPTRK,'IPBBY',IPBY_PTR)
         CALL LCMGPD(IPTRK,'YB',BY_PTR)
         CALL C_F_POINTER(IPBY_PTR,IPBY,(/ 2*IELEM*LL4Y /))
         CALL C_F_POINTER(BY_PTR,BY,(/ 2*IELEM*LL4Y /))
         IF(ISEG.EQ.0) THEN
*           SCALAR MULTIPLICATION FOR A Y-ORIENTED MATRIX.
            CALL LCMGPD(IPTRK,'MUY',MUY_PTR)
            CALL C_F_POINTER(MUY_PTR,MUY,(/ LL4Y /))
            CALL C_F_POINTER(AY_PTR,AY,(/ MUY(LL4Y) /))
            CALL ALLDLM(LL4Y,AY,F2(IOFY+1),F3(IOFY+1),MUY,1)
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL MULTIPLICATION FOR A Y-ORIENTED MATRIX.
            CALL LCMGET(IPTRK,'LL4VY',LL4VY)
            CALL LCMGPD(IPTRK,'MUVY',MUY_PTR)
            CALL LCMGPD(IPTRK,'IPVY',IPVY_PTR)
            CALL LCMLEN(IPTRK,'NBLY',LONY,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLY',NBLY_PTR)
            CALL LCMGPD(IPTRK,'LBLY',LBLY_PTR)
            CALL C_F_POINTER(MUY_PTR,MUY,(/ LL4VY/ISEG /))
            CALL C_F_POINTER(IPVY_PTR,IPVY,(/ LL4Y /))
            CALL C_F_POINTER(NBLY_PTR,NBLY,(/ LONY /))
            CALL C_F_POINTER(LBLY_PTR,LBLY,(/ LONY /))
            CALL LCMLEN(IPSYS,'YA'//NAMT,ASS_LEN,ITYLCM)
            CALL C_F_POINTER(AY_PTR,AY,(/ ASS_LEN /))
            ALLOCATE(GAR(LL4VY),GAF(LL4VY))
            GAR(:LL4VY)=0.0
            DO 120 I=1,LL4Y
            GAR(IPVY(I))=F2(IOFY+I)
  120       CONTINUE
            CALL ALVDLM(LTSW,AY,GAR,GAF,MUY,1,ISEG,LONY,NBLY,LBLY)
            DO 130 I=1,LL4Y
            F3(IOFY+I)=GAF(IPVY(I))
  130       CONTINUE
            DEALLOCATE(GAF,GAR)
         ENDIF
         IF((IPR.NE.1).AND.(IPR.NE.2)) THEN
            DO 155 I=1,LL4Y
            GG=F3(IOFY+I)
            DO 140 J=1,2*IELEM
            II=IPBY((I-1)*2*IELEM+J)
            IF(II.EQ.0) GO TO 150
            GG=GG+BY((I-1)*2*IELEM+J)*F2(II)
  140       CONTINUE
  150       F3(IOFY+I)=GG
  155       CONTINUE
         ENDIF
*
         IF(LL4W.GT.0) THEN
*           PIOLAT TRANSFORM TERM.
            CALL FLDPYX(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
     1      DIFF,F2(IOFX+1),F3(IOFY+1))
            CALL FLDPYW(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
     1      DIFF,F2(IOFW+1),F3(IOFY+1))
         ENDIF
      ENDIF
*
      NULLIFY(IPBZ)
      NULLIFY(BZ)
      IF(LL4Z.GT.0) THEN
         CALL LCMGPD(IPSYS,'ZA'//NAMT,AZ_PTR)
         CALL LCMGPD(IPTRK,'IPBBZ',IPBZ_PTR)
         CALL LCMGPD(IPTRK,'ZB',BZ_PTR)
         CALL C_F_POINTER(IPBZ_PTR,IPBZ,(/ 2*IELEM*LL4Z /))
         CALL C_F_POINTER(BZ_PTR,BZ,(/ 2*IELEM*LL4Z /))
         IF(ISEG.EQ.0) THEN
*           SCALAR MULTIPLICATION FOR A Y-ORIENTED MATRIX.
            CALL LCMGPD(IPTRK,'MUZ',MUZ_PTR)
            CALL C_F_POINTER(MUZ_PTR,MUZ,(/ LL4Z /))
            CALL C_F_POINTER(AZ_PTR,AZ,(/ MUZ(LL4Z) /))
            CALL ALLDLM(LL4Z,AZ,F2(IOFZ+1),F3(IOFZ+1),MUZ,1)
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL MULTIPLICATION FOR A Z-ORIENTED MATRIX.
            CALL LCMGET(IPTRK,'LL4VZ',LL4VZ)
            CALL LCMGPD(IPTRK,'MUVZ',MUZ_PTR)
            CALL LCMGPD(IPTRK,'IPVZ',IPVZ_PTR)
            CALL LCMLEN(IPTRK,'NBLZ',LONZ,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLZ',NBLZ_PTR)
            CALL LCMGPD(IPTRK,'LBLZ',LBLZ_PTR)
            CALL C_F_POINTER(MUZ_PTR,MUZ,(/ LL4VZ/ISEG /))
            CALL C_F_POINTER(IPVZ_PTR,IPVZ,(/ LL4Z /))
            CALL C_F_POINTER(NBLZ_PTR,NBLZ,(/ LONZ /))
            CALL C_F_POINTER(LBLZ_PTR,LBLZ,(/ LONZ /))
            CALL LCMLEN(IPSYS,'ZA'//NAMT,ASS_LEN,ITYLCM)
            CALL C_F_POINTER(AZ_PTR,AZ,(/ ASS_LEN /))
            ALLOCATE(GAR(LL4VZ),GAF(LL4VZ))
            GAR(:LL4VZ)=0.0
            DO 170 I=1,LL4Z
            GAR(IPVZ(I))=F2(IOFZ+1)
  170       CONTINUE
            CALL ALVDLM(LTSW,AZ,GAR,GAF,MUZ,1,ISEG,LONZ,NBLZ,LBLZ)
            DO 180 I=1,LL4Z
            F3(IOFZ+I)=GAF(IPVZ(I))
  180       CONTINUE
            DEALLOCATE(GAF,GAR)
         ENDIF
         IF((IPR.NE.1).AND.(IPR.NE.2)) THEN
            DO 205 I=1,LL4Z
            GG=F3(IOFZ+I)
            DO 190 J=1,2*IELEM
            II=IPBZ((I-1)*2*IELEM+J)
            IF(II.EQ.0) GO TO 200
            GG=GG+BZ((I-1)*2*IELEM+J)*F2(II)
  190       CONTINUE
  200       F3(IOFZ+I)=GG
  205       CONTINUE
         ENDIF
      ENDIF
*
      DO 210 I=1,LL4F
      F3(I)=TF(I)*F2(I)
  210 CONTINUE
      IF((IPR.NE.1).AND.(IPR.NE.2)) THEN
         DO 230 I=1,LL4W
         DO 220 J=1,2*IELEM
         II=IPBW((I-1)*2*IELEM+J)
         IF(II.EQ.0) GO TO 230
         F3(II)=F3(II)+BW((I-1)*2*IELEM+J)*F2(IOFW+I)
  220    CONTINUE
  230    CONTINUE
         DO 250 I=1,LL4X
         DO 240 J=1,2*IELEM
         II=IPBX((I-1)*2*IELEM+J)
         IF(II.EQ.0) GO TO 250
         F3(II)=F3(II)+BX((I-1)*2*IELEM+J)*F2(IOFX+I)
  240    CONTINUE
  250    CONTINUE
         DO 270 I=1,LL4Y
         DO 260 J=1,2*IELEM
         II=IPBY((I-1)*2*IELEM+J)
         IF(II.EQ.0) GO TO 270
         F3(II)=F3(II)+BY((I-1)*2*IELEM+J)*F2(IOFY+I)
  260    CONTINUE
  270    CONTINUE
         DO 290 I=1,LL4Z
         DO 280 J=1,2*IELEM
         II=IPBZ((I-1)*2*IELEM+J)
         IF(II.EQ.0) GO TO 290
         F3(II)=F3(II)+BZ((I-1)*2*IELEM+J)*F2(IOFZ+I)
  280    CONTINUE
  290    CONTINUE
      ENDIF
      RETURN
      END