summaryrefslogtreecommitdiff
path: root/Trivac/src/FLDTMX.f
blob: aaaf33d987de1857338d42f728a6f0bc9ee61b4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
*DECK FLDTMX
      FUNCTION FLDTMX(F,N,IBLSZ,ITER,IPTRK,IPSYS,IPFLUX) RESULT(X)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Multiplication of A^(-1)B times the harmonic flux in TRIVAC.
*
*Copyright:
* Copyright (C) 2020 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* F       harmonic flux vector.
* N       number of unknowns in one harmonic.
* IBLSZ   block size of the Arnoldi Hessenberg matrix.
* ITER    Arnoldi iteration index.
* IPTRK   L_TRACK pointer to the tracking information.
* IPSYS   L_SYSTEM pointer to system matrices.
* IPFLUX  L_FLUX pointer to the solution.
*
*Parameters: output
* X       result of the multiplication.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER, INTENT(IN) :: N,IBLSZ,ITER
      COMPLEX(KIND=8), DIMENSION(N,IBLSZ), INTENT(IN) :: F
      COMPLEX(KIND=8), DIMENSION(N,IBLSZ) :: X
      TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
*----
*  LOCAL VARIABLES
*----
      PARAMETER(NSTATE=40)
      INTEGER ISTATE(NSTATE)
      REAL EPSCON(5),TIME(2)
      CHARACTER TEXT12*12,HSMG*131
      LOGICAL LADJ,LUPS
      REAL(KIND=8) DERTOL
      INTERFACE
        FUNCTION FLDONE_TEMPLATE(X,B,N,IPTRK,IPSYS,IPFLUX) RESULT(Y)
          USE GANLIB
          INTEGER, INTENT(IN) :: N
          REAL(KIND=8), DIMENSION(N), INTENT(IN) :: X, B
          REAL(KIND=8), DIMENSION(N) :: Y
          TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
        END FUNCTION FLDONE_TEMPLATE
      END INTERFACE
      PROCEDURE(FLDONE_TEMPLATE) :: FLDONE
*----
*  ALLOCATABLE ARRAYS
*----
      REAL, DIMENSION(:), ALLOCATABLE :: WORK
      REAL, DIMENSION(:,:), ALLOCATABLE :: GAF1,GRAD
      REAL, DIMENSION(:), POINTER :: AGAR
      REAL(KIND=8), DIMENSION(:), ALLOCATABLE :: DWORK1,DWORK2
      TYPE(C_PTR) AGAR_PTR
*
*     TIME(1) : CPU TIME FOR THE SOLUTION OF LINEAR SYSTEMS.
*     TIME(2) : CPU TIME FOR BILINEAR PRODUCT EVALUATIONS.
      CALL LCMGET(IPFLUX,'CPU-TIME',TIME)
      CALL KDRCPU(TK1)
*----
*  RECOVER INFORMATION FROM IPTRK, IPSYS AND IPFLUX
*----
      CALL LCMGET(IPTRK,'STATE-VECTOR',ISTATE)
      NEL=ISTATE(1)
      NUN=ISTATE(2)
      NLF=ISTATE(30)
      CALL LCMGET(IPSYS,'STATE-VECTOR',ISTATE)
      NGRP=ISTATE(1)
      LL4=ISTATE(2)
      ITY=ISTATE(4)
      NBMIX=ISTATE(7)
      NAN=ISTATE(8)
      IF(ITY.EQ.13) LL4=LL4*NLF/2 ! SPN cases
      CALL LCMGET(IPFLUX,'STATE-VECTOR',ISTATE)
      LADJ=ISTATE(3).EQ.10
      ICL1=ISTATE(8)
      ICL2=ISTATE(9)
      IREBAL=ISTATE(10)
      MAXINR=ISTATE(11)
      NADI=ISTATE(13)
      NSTARD=ISTATE(15)
      IMPX=ISTATE(40)
      CALL LCMGET(IPFLUX,'EPS-CONVERGE',EPSCON)
      EPSINR=EPSCON(1)
      EPSMSR=EPSCON(4)
      IF(LL4*NGRP.NE.N) CALL XABORT('FLDTMX: INCONSISTENT UNKNOWNS.')
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(WORK(NUN),GAF1(NUN,NGRP),GRAD(NUN,NGRP))
*----
*  CHECK FOR UP-SCATTERING.
*----
      LUPS=.FALSE.
      DO 20 IGR=1,NGRP-1
      DO 10 JGR=IGR+1,NGRP
      WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
      CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
      IF(ILONG.GT.0) THEN
        LUPS=.TRUE.
        MAXINR=MAX(MAXINR,10)
        GO TO 30
      ENDIF
   10 CONTINUE
   20 CONTINUE
*----
*  MAIN LOOP OVER MODES.
*----
   30 DO 240 IMOD=1,IBLSZ
      IF(LADJ) THEN
*       ADJOINT SOLUTION
*----
*  COMPUTE B TIMES THE FLUX.
*----
        DO 70 IGR=1,NGRP
        DO 40 I=1,LL4
        GAF1(I,IGR)=0.0
   40   CONTINUE
        DO 60 JGR=1,NGRP
        WRITE(TEXT12,'(1HB,2I3.3)') JGR,IGR
        CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
        IF(ILONG.EQ.0) GO TO 60
        CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
        CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
        DO 50 I=1,ILONG
        IOF=(JGR-1)*LL4+I
        GAF1(I,IGR)=GAF1(I,IGR)+AGAR(I)*REAL(F(IOF,IMOD),KIND=4)
        IF(ABS(AIMAG(F(IOF,IMOD))).GT.1.0E-8) THEN
          WRITE(HSMG,'(13HFLDTMX: FLUX(,2I8,2H)=,1P,2E12.4,
     1    12H IS COMPLEX.)') IOF,IMOD,F(IOF,IMOD)
          CALL XABORT(HSMG)
        ENDIF
   50   CONTINUE
   60   CONTINUE
   70   CONTINUE
        CALL KDRCPU(TK2)
        TIME(2)=TIME(2)+(TK2-TK1)
*----
*  COMPUTE A^(-1)B WITHOUT DOWN-SCATTERING.
*----
        DO 120 IGR=NGRP,1,-1
        CALL KDRCPU(TK1)
        DO 80 I=1,LL4
        GRAD(I,IGR)=GAF1(I,IGR)
   80   CONTINUE
        DO 110 JGR=NGRP,IGR+1,-1
        WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
        CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
        IF(ILONG.EQ.0) GO TO 110
        IF(ITY.EQ.13) THEN
          CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD(1,JGR),WORK)
          DO 90 I=1,LL4
          GRAD(I,IGR)=GRAD(I,IGR)+WORK(I)
   90     CONTINUE
        ELSE
          CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
          CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
          DO 100 I=1,ILONG
          GRAD(I,IGR)=GRAD(I,IGR)+AGAR(I)*GRAD(I,JGR)
  100     CONTINUE
        ENDIF
  110   CONTINUE
        CALL KDRCPU(TK2)
        TIME(2)=TIME(2)+(TK2-TK1)
*
        CALL KDRCPU(TK1)
        WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
        IF(NSTARD.EQ.0) THEN
          WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
          CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD(1,IGR),NADI)
          JTER=NADI
        ELSE
*         use a GMRES solution of the linear system
          DERTOL=EPSMSR
          ISTATE(39)=IGR
          CALL LCMPUT(IPFLUX,'STATE-VECTOR',NSTATE,1,ISTATE)
          ALLOCATE(DWORK1(LL4),DWORK2(LL4))
          DWORK1(:LL4)=GRAD(:LL4,IGR) ! source
          DWORK2(:LL4)=0.0            ! estimate of the flux
          CALL FLDMRA(DWORK1,FLDONE,LL4,DERTOL,NSTARD,NADI,IMPX,IPTRK,
     1    IPSYS,IPFLUX,DWORK2,JTER)
          GRAD(:LL4,IGR)=REAL(DWORK2(:LL4))
          DEALLOCATE(DWORK2,DWORK1)
        ENDIF
        CALL KDRCPU(TK2)
        TIME(1)=TIME(1)+(TK2-TK1)
  120   CONTINUE
      ELSE
*       DIRECT SOLUTION
*----
*  COMPUTE B TIMES THE FLUX.
*----
        DO 160 IGR=1,NGRP
        DO 130 I=1,LL4
        GAF1(I,IGR)=0.0
  130   CONTINUE
        DO 150 JGR=1,NGRP
        WRITE(TEXT12,'(1HB,2I3.3)') IGR,JGR
        CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
        IF(ILONG.EQ.0) GO TO 150
        CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
        CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
        DO 140 I=1,ILONG
        IOF=(JGR-1)*LL4+I
        GAF1(I,IGR)=GAF1(I,IGR)+AGAR(I)*REAL(F(IOF,IMOD),KIND=4)
        IF(ABS(AIMAG(F(IOF,IMOD))).GT.1.0E-8) THEN
          WRITE(HSMG,'(13HFLDTMX: FLUX(,2I8,2H)=,1P,2E12.4,
     1    12H IS COMPLEX.)') IOF,IMOD,F(IOF,IMOD)
          CALL XABORT(HSMG)
        ENDIF
  140   CONTINUE
  150   CONTINUE
  160   CONTINUE
        CALL KDRCPU(TK2)
        TIME(2)=TIME(2)+(TK2-TK1)
*----
*  COMPUTE A^(-1)B WITHOUT UP-SCATTERING.
*----
        DO 210 IGR=1,NGRP
        CALL KDRCPU(TK1)
        DO 170 I=1,LL4
        GRAD(I,IGR)=GAF1(I,IGR)
  170   CONTINUE
        DO 200 JGR=1,IGR-1
        WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
        CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
        IF(ILONG.EQ.0) GO TO 200
        IF(ITY.EQ.13) THEN
          CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD(1,JGR),WORK)
          DO 180 I=1,LL4
          GRAD(I,IGR)=GRAD(I,IGR)+WORK(I)
  180     CONTINUE
        ELSE
          CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
          CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
          DO 190 I=1,ILONG
          GRAD(I,IGR)=GRAD(I,IGR)+AGAR(I)*GRAD(I,JGR)
  190     CONTINUE
        ENDIF
  200   CONTINUE
        CALL KDRCPU(TK2)
        TIME(2)=TIME(2)+(TK2-TK1)
*
        CALL KDRCPU(TK1)
        IF(NSTARD.EQ.0) THEN
          WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
          CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD(1,IGR),NADI)
          JTER=-NADI
        ELSE
*         use a GMRES solution of the linear system
          DERTOL=EPSMSR
          ISTATE(39)=IGR
          CALL LCMPUT(IPFLUX,'STATE-VECTOR',NSTATE,1,ISTATE)
          ALLOCATE(DWORK1(LL4),DWORK2(LL4))
          DWORK1(:LL4)=GRAD(:LL4,IGR) ! source
          DWORK2(:LL4)=0.0            ! estimate of the flux
          CALL FLDMRA(DWORK1,FLDONE,LL4,DERTOL,NSTARD,NADI,IMPX,IPTRK,
     1    IPSYS,IPFLUX,DWORK2,JTER)
          GRAD(:LL4,IGR)=REAL(DWORK2(:LL4))
          DEALLOCATE(DWORK2,DWORK1)
        ENDIF
        CALL KDRCPU(TK2)
        TIME(1)=TIME(1)+(TK2-TK1)
  210   CONTINUE
      ENDIF
*----
*  PERFORM THERMAL (UP/DOWN-SCATTERING) ITERATIONS.
*----
      KTER=0
      IF((IREBAL.EQ.1).OR.LUPS) THEN
        CALL FLDTHR(IPTRK,IPSYS,IPFLUX,LADJ,LL4,ITY,NUN,NGRP,ICL1,ICL2,
     1  IMPX,NADI,NSTARD,MAXINR,EPSINR,KTER,TIME(1),TIME(2),GRAD)
      ENDIF
      DO 230 IGR=1,NGRP
      DO 220 I=1,LL4
      IOF=(IGR-1)*LL4+I
      X(IOF,IMOD)=GRAD(I,IGR)
  220 CONTINUE
  230 CONTINUE
*----
*  END OF LOOP OVER MODES.
*----
  240 CONTINUE
      CALL LCMPUT(IPFLUX,'CPU-TIME',2,2,TIME)
      IF(IMPX.GT.10) WRITE(6,250) ITER,JTER,KTER
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(GRAD,GAF1,WORK)
      RETURN
  250 FORMAT(49H FLDTMX: MATRIX MULTIPLICATION AT IRAM ITERATION=,I5,
     1 18H INNER ITERATIONS=,I5,20H THERMAL ITERATIONS=,I5)
      END FUNCTION FLDTMX