summaryrefslogtreecommitdiff
path: root/Trivac/src/FLDTHR.f
blob: d27e6de4883c06364445abd3ce935e757bd250a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
*DECK FLDTHR
      SUBROUTINE FLDTHR(IPTRK,IPSYS,IPFLUX,LADJ,LL4,ITY,NUN,NGRP,ICL1,
     1 ICL2,IMPX,NADI,NSTARD,MAXINR,EPSINR,ITER,TKT,TKB,GRAD1)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform thermal (up-scattering) iterations in Trivac.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK   L_TRACK pointer to the tracking information.
* IPSYS   L_SYSTEM pointer to system matrices.
* IPFLUX  L_FLUX pointer to the solution.
* LADJ    flag set to .TRUE. for adjoint solution acceleration.
* LL4     order of the system matrices.
* ITY     type of solution (2: classical Trivac; 3: Thomas-Raviart).
* NUN     number of unknowns in each energy group.
* NGRP    number of energy groups.
* ICL1    number of free iterations in one cycle of the inverse power
*         method.
* ICL2    number of accelerated iterations in one cycle.
* IMPX    print parameter (set to 0 for no printing).
* NADI    number of inner ADI iterations per outer iteration.
* NSTARD  number of restarting iterations with GMRES.
* MAXINR  maximum number of thermal iterations.
* EPSINR  thermal iteration epsilon.
*
*Parameters: input/output
* ITER    actual number of thermal iterations.
* TKT     CPU time spent to compute the solution of linear systems.
* TKB     CPU time spent to compute the bilinear products.
* GRAD1   delta flux for this outer iteration.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
      INTEGER LL4,ITY,NUN,NGRP,ICL1,ICL2,IMPX,NADI,NSTARD,MAXINR,ITER
      REAL EPSINR,TKT,TKB,GRAD1(NUN,NGRP)
      LOGICAL LADJ
*----
*  LOCAL VARIABLES
*----
      PARAMETER(NSTATE=40)
      INTEGER ISTATE(NSTATE)
      REAL(KIND=8) DERTOL
      CHARACTER TEXT12*12,TEXT3*3
      INTERFACE
        FUNCTION FLDONE_TEMPLATE(X,B,N,IPTRK,IPSYS,IPFLUX) RESULT(Y)
          USE GANLIB
          INTEGER, INTENT(IN) :: N
          REAL(KIND=8), DIMENSION(N), INTENT(IN) :: X, B
          REAL(KIND=8), DIMENSION(N) :: Y
          TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
        END FUNCTION FLDONE_TEMPLATE
      END INTERFACE
      PROCEDURE(FLDONE_TEMPLATE) :: FLDONE
*----
*  ALLOCATABLE ARRAYS
*----
      REAL, DIMENSION(:), ALLOCATABLE :: W
      REAL, DIMENSION(:,:), ALLOCATABLE :: GAR2
      REAL, DIMENSION(:,:,:), ALLOCATABLE :: WORK
      REAL, DIMENSION(:), POINTER :: AGAR
      REAL(KIND=8), DIMENSION(:), ALLOCATABLE :: DWORK1,DWORK2
      TYPE(C_PTR) AGAR_PTR
*----
*  SCRATCH STORAGE ALLOCATION
*----
      IF(MAXINR.EQ.0) RETURN
      ALLOCATE(GAR2(NUN,NGRP),WORK(LL4,NGRP,3))
*
      IF(NSTARD.GT.0) CALL LCMGET(IPFLUX,'STATE-VECTOR',ISTATE)
      NCTOT=ICL1+ICL2
      IF(ICL2.EQ.0) THEN
         NCPTM=NCTOT+1
      ELSE
         NCPTM=ICL1
      ENDIF
      DO 11 IGR=1,NGRP
      DO 10 I=1,LL4
      WORK(I,IGR,1)=0.0
      WORK(I,IGR,2)=0.0
      WORK(I,IGR,3)=GRAD1(I,IGR)
   10 CONTINUE
   11 CONTINUE
      IGDEB=1
*----
*  PERFORM THERMAL (UP-SCATTERING) ITERATIONS
*----
      TEXT3='NO '
      ITER=2
      DO
         CALL KDRCPU(TK1)
         IF(LADJ) THEN
*           ADJOINT SOLUTION
            DO 31 IGR=IGDEB,NGRP
            WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
            CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,WORK(1,IGR,3),
     1      GAR2(1,IGR))
            DO 30 JGR=1,NGRP
            IF(JGR.EQ.IGR) GO TO 30
            WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
            CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
            IF(ILONG.EQ.0) GO TO 30
            IF(ITY.EQ.13) THEN
               ALLOCATE(W(LL4))
               CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,WORK(1,JGR,3),
     1         W(1))
               DO 15 I=1,LL4
               GAR2(I,IGR)=GAR2(I,IGR)-W(I)
   15          CONTINUE
               DEALLOCATE(W)
            ELSE
               CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
               CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
               DO 20 I=1,ILONG
               GAR2(I,IGR)=GAR2(I,IGR)-AGAR(I)*WORK(I,JGR,3)
   20          CONTINUE
            ENDIF
   30       CONTINUE
   31       CONTINUE
            DO 61 IGR=NGRP,IGDEB,-1
            DO 50 JGR=NGRP,IGR+1,-1
            WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
            CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
            IF(ILONG.EQ.0) GO TO 50
            IF(ITY.EQ.13) THEN
               ALLOCATE(W(LL4))
               CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GAR2(1,JGR),W(1))
               DO 35 I=1,LL4
               GAR2(I,IGR)=GAR2(I,IGR)+W(I)
   35          CONTINUE
               DEALLOCATE(W)
            ELSE
               CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
               CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
               DO 40 I=1,ILONG
               GAR2(I,IGR)=GAR2(I,IGR)+AGAR(I)*GAR2(I,JGR)
   40          CONTINUE
            ENDIF
   50       CONTINUE
            CALL KDRCPU(TK2)
            TKB=TKB+(TK2-TK1)
*
            CALL KDRCPU(TK1)
            IF(NSTARD.EQ.0) THEN
               WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
               CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GAR2(1,IGR),NADI)
               JTER=NADI
            ELSE
*              use a GMRES solution of the linear system
               DERTOL=EPSINR
               ISTATE(39)=IGR
               CALL LCMPUT(IPFLUX,'STATE-VECTOR',NSTATE,1,ISTATE)
               ALLOCATE(DWORK1(LL4),DWORK2(LL4))
               DWORK1(:LL4)=GAR2(:LL4,IGR)   ! source
               DWORK2(:LL4)=WORK(:LL4,IGR,3) ! estimate of the flux
               CALL FLDMRA(DWORK1,FLDONE,LL4,DERTOL,NSTARD,NADI,IMPX,
     1         IPTRK,IPSYS,IPFLUX,DWORK2,JTER)
               GAR2(:LL4,IGR)=REAL(DWORK2(:LL4))
               DEALLOCATE(DWORK2,DWORK1)
            ENDIF
            DO 60 I=1,LL4
            WORK(I,IGR,1)=WORK(I,IGR,2)
            WORK(I,IGR,2)=WORK(I,IGR,3)
            WORK(I,IGR,3)=GRAD1(I,IGR)+(WORK(I,IGR,2)-GAR2(I,IGR))
   60       CONTINUE
   61       CONTINUE
         ELSE
*           DIRECT SOLUTION
            DO 81 IGR=IGDEB,NGRP
            WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
            CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,WORK(1,IGR,3),
     1      GAR2(1,IGR))
            DO 80 JGR=1,NGRP
            IF(JGR.EQ.IGR) GO TO 80
            WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
            CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
            IF(ILONG.EQ.0) GO TO 80
            IF(ITY.EQ.13) THEN
               ALLOCATE(W(LL4))
               CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,WORK(1,JGR,3),
     1         W(1))
               DO 65 I=1,LL4
               GAR2(I,IGR)=GAR2(I,IGR)-W(I)
   65          CONTINUE
               DEALLOCATE(W)
            ELSE
               CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
               CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
               DO 70 I=1,ILONG
               GAR2(I,IGR)=GAR2(I,IGR)-AGAR(I)*WORK(I,JGR,3)
   70          CONTINUE
            ENDIF
   80       CONTINUE
   81       CONTINUE
            DO 115 IGR=IGDEB,NGRP
            DO 100 JGR=1,IGR-1
            WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
            CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
            IF(ILONG.EQ.0) GO TO 100
            IF(ITY.EQ.13) THEN
               ALLOCATE(W(LL4))
               CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GAR2(1,JGR),W(1))
               DO 85 I=1,LL4
               GAR2(I,IGR)=GAR2(I,IGR)+W(I)
   85          CONTINUE
               DEALLOCATE(W)
            ELSE
               CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
               CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
               DO 90 I=1,ILONG
               GAR2(I,IGR)=GAR2(I,IGR)+AGAR(I)*GAR2(I,JGR)
   90          CONTINUE
            ENDIF
  100       CONTINUE
            CALL KDRCPU(TK2)
            TKB=TKB+(TK2-TK1)
*
            CALL KDRCPU(TK1)
            WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
            IF(NSTARD.EQ.0) THEN
               WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
               CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GAR2(1,IGR),NADI)
               JTER=NADI
            ELSE
*              use a GMRES solution of the linear system
               DERTOL=EPSINR
               ISTATE(39)=IGR
               CALL LCMPUT(IPFLUX,'STATE-VECTOR',NSTATE,1,ISTATE)
               ALLOCATE(DWORK1(LL4),DWORK2(LL4))
               DWORK1(:LL4)=GAR2(:LL4,IGR)   ! source
               DWORK2(:LL4)=WORK(:LL4,IGR,3) ! estimate of the flux
               CALL FLDMRA(DWORK1,FLDONE,LL4,DERTOL,NSTARD,NADI,IMPX,
     1         IPTRK,IPSYS,IPFLUX,DWORK2,JTER)
               GAR2(:LL4,IGR)=REAL(DWORK2(:LL4))
               DEALLOCATE(DWORK2,DWORK1)
            ENDIF
            DO 110 I=1,LL4
            WORK(I,IGR,1)=WORK(I,IGR,2)
            WORK(I,IGR,2)=WORK(I,IGR,3)
            WORK(I,IGR,3)=GRAD1(I,IGR)+(WORK(I,IGR,2)-GAR2(I,IGR))
  110       CONTINUE
  115       CONTINUE
         ENDIF
         IF(MOD(ITER-2,NCTOT).GE.NCPTM) THEN
            CALL FLD2AC(NGRP,LL4,IGDEB,WORK,ZMU)
         ELSE
            ZMU=1.0
         ENDIF
         IGDEBO=IGDEB
         DO 130 IGR=IGDEBO,NGRP
         GINN=0.0
         FINN=0.0
         DO 120 I=1,LL4
         GINN=MAX(GINN,ABS(WORK(I,IGR,2)-WORK(I,IGR,3)))
         FINN=MAX(FINN,ABS(WORK(I,IGR,3)))
  120    CONTINUE
         GINN=GINN/FINN
         IF((GINN.LT.EPSINR).AND.(IGDEB.EQ.IGR)) IGDEB=IGDEB+1
  130    CONTINUE
         CALL KDRCPU(TK2)
         TKT=TKT+(TK2-TK1)
         IF(GINN.LT.EPSINR) TEXT3='YES'
         IF(IMPX.GT.2) WRITE(6,1000) ITER,GINN,EPSINR,IGDEB,ZMU,TEXT3,
     1   JTER
         IF((GINN.LT.EPSINR).OR.(ITER.EQ.MAXINR)) EXIT
         ITER=ITER+1
      ENDDO
*----
*  END OF THERMAL ITERATIONS
*----
      DO 175 I=1,LL4
      DO 170 IGR=1,NGRP
      GRAD1(I,IGR)=WORK(I,IGR,3)
  170 CONTINUE
  175 CONTINUE
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(GAR2,WORK)
      RETURN
*
 1000 FORMAT (10X,3HIN(,I3,6H) FLX:,5H PRC=,1P,E9.2,5H TAR=,E9.2,
     1 7H IGDEB=, I13,6H ACCE=,0P,F12.5,12H  CONVERGED=,A3,6H JTER=,
     2 I4)
      END