1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
*DECK FLDTHR
SUBROUTINE FLDTHR(IPTRK,IPSYS,IPFLUX,LADJ,LL4,ITY,NUN,NGRP,ICL1,
1 ICL2,IMPX,NADI,NSTARD,MAXINR,EPSINR,ITER,TKT,TKB,GRAD1)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform thermal (up-scattering) iterations in Trivac.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK L_TRACK pointer to the tracking information.
* IPSYS L_SYSTEM pointer to system matrices.
* IPFLUX L_FLUX pointer to the solution.
* LADJ flag set to .TRUE. for adjoint solution acceleration.
* LL4 order of the system matrices.
* ITY type of solution (2: classical Trivac; 3: Thomas-Raviart).
* NUN number of unknowns in each energy group.
* NGRP number of energy groups.
* ICL1 number of free iterations in one cycle of the inverse power
* method.
* ICL2 number of accelerated iterations in one cycle.
* IMPX print parameter (set to 0 for no printing).
* NADI number of inner ADI iterations per outer iteration.
* NSTARD number of restarting iterations with GMRES.
* MAXINR maximum number of thermal iterations.
* EPSINR thermal iteration epsilon.
*
*Parameters: input/output
* ITER actual number of thermal iterations.
* TKT CPU time spent to compute the solution of linear systems.
* TKB CPU time spent to compute the bilinear products.
* GRAD1 delta flux for this outer iteration.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
INTEGER LL4,ITY,NUN,NGRP,ICL1,ICL2,IMPX,NADI,NSTARD,MAXINR,ITER
REAL EPSINR,TKT,TKB,GRAD1(NUN,NGRP)
LOGICAL LADJ
*----
* LOCAL VARIABLES
*----
PARAMETER(NSTATE=40)
INTEGER ISTATE(NSTATE)
REAL(KIND=8) DERTOL
CHARACTER TEXT12*12,TEXT3*3
INTERFACE
FUNCTION FLDONE_TEMPLATE(X,B,N,IPTRK,IPSYS,IPFLUX) RESULT(Y)
USE GANLIB
INTEGER, INTENT(IN) :: N
REAL(KIND=8), DIMENSION(N), INTENT(IN) :: X, B
REAL(KIND=8), DIMENSION(N) :: Y
TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
END FUNCTION FLDONE_TEMPLATE
END INTERFACE
PROCEDURE(FLDONE_TEMPLATE) :: FLDONE
*----
* ALLOCATABLE ARRAYS
*----
REAL, DIMENSION(:), ALLOCATABLE :: W
REAL, DIMENSION(:,:), ALLOCATABLE :: GAR2
REAL, DIMENSION(:,:,:), ALLOCATABLE :: WORK
REAL, DIMENSION(:), POINTER :: AGAR
REAL(KIND=8), DIMENSION(:), ALLOCATABLE :: DWORK1,DWORK2
TYPE(C_PTR) AGAR_PTR
*----
* SCRATCH STORAGE ALLOCATION
*----
IF(MAXINR.EQ.0) RETURN
ALLOCATE(GAR2(NUN,NGRP),WORK(LL4,NGRP,3))
*
IF(NSTARD.GT.0) CALL LCMGET(IPFLUX,'STATE-VECTOR',ISTATE)
NCTOT=ICL1+ICL2
IF(ICL2.EQ.0) THEN
NCPTM=NCTOT+1
ELSE
NCPTM=ICL1
ENDIF
DO 11 IGR=1,NGRP
DO 10 I=1,LL4
WORK(I,IGR,1)=0.0
WORK(I,IGR,2)=0.0
WORK(I,IGR,3)=GRAD1(I,IGR)
10 CONTINUE
11 CONTINUE
IGDEB=1
*----
* PERFORM THERMAL (UP-SCATTERING) ITERATIONS
*----
TEXT3='NO '
ITER=2
DO
CALL KDRCPU(TK1)
IF(LADJ) THEN
* ADJOINT SOLUTION
DO 31 IGR=IGDEB,NGRP
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,WORK(1,IGR,3),
1 GAR2(1,IGR))
DO 30 JGR=1,NGRP
IF(JGR.EQ.IGR) GO TO 30
WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 30
IF(ITY.EQ.13) THEN
ALLOCATE(W(LL4))
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,WORK(1,JGR,3),
1 W(1))
DO 15 I=1,LL4
GAR2(I,IGR)=GAR2(I,IGR)-W(I)
15 CONTINUE
DEALLOCATE(W)
ELSE
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
DO 20 I=1,ILONG
GAR2(I,IGR)=GAR2(I,IGR)-AGAR(I)*WORK(I,JGR,3)
20 CONTINUE
ENDIF
30 CONTINUE
31 CONTINUE
DO 61 IGR=NGRP,IGDEB,-1
DO 50 JGR=NGRP,IGR+1,-1
WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 50
IF(ITY.EQ.13) THEN
ALLOCATE(W(LL4))
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GAR2(1,JGR),W(1))
DO 35 I=1,LL4
GAR2(I,IGR)=GAR2(I,IGR)+W(I)
35 CONTINUE
DEALLOCATE(W)
ELSE
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
DO 40 I=1,ILONG
GAR2(I,IGR)=GAR2(I,IGR)+AGAR(I)*GAR2(I,JGR)
40 CONTINUE
ENDIF
50 CONTINUE
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
*
CALL KDRCPU(TK1)
IF(NSTARD.EQ.0) THEN
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GAR2(1,IGR),NADI)
JTER=NADI
ELSE
* use a GMRES solution of the linear system
DERTOL=EPSINR
ISTATE(39)=IGR
CALL LCMPUT(IPFLUX,'STATE-VECTOR',NSTATE,1,ISTATE)
ALLOCATE(DWORK1(LL4),DWORK2(LL4))
DWORK1(:LL4)=GAR2(:LL4,IGR) ! source
DWORK2(:LL4)=WORK(:LL4,IGR,3) ! estimate of the flux
CALL FLDMRA(DWORK1,FLDONE,LL4,DERTOL,NSTARD,NADI,IMPX,
1 IPTRK,IPSYS,IPFLUX,DWORK2,JTER)
GAR2(:LL4,IGR)=REAL(DWORK2(:LL4))
DEALLOCATE(DWORK2,DWORK1)
ENDIF
DO 60 I=1,LL4
WORK(I,IGR,1)=WORK(I,IGR,2)
WORK(I,IGR,2)=WORK(I,IGR,3)
WORK(I,IGR,3)=GRAD1(I,IGR)+(WORK(I,IGR,2)-GAR2(I,IGR))
60 CONTINUE
61 CONTINUE
ELSE
* DIRECT SOLUTION
DO 81 IGR=IGDEB,NGRP
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,WORK(1,IGR,3),
1 GAR2(1,IGR))
DO 80 JGR=1,NGRP
IF(JGR.EQ.IGR) GO TO 80
WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 80
IF(ITY.EQ.13) THEN
ALLOCATE(W(LL4))
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,WORK(1,JGR,3),
1 W(1))
DO 65 I=1,LL4
GAR2(I,IGR)=GAR2(I,IGR)-W(I)
65 CONTINUE
DEALLOCATE(W)
ELSE
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
DO 70 I=1,ILONG
GAR2(I,IGR)=GAR2(I,IGR)-AGAR(I)*WORK(I,JGR,3)
70 CONTINUE
ENDIF
80 CONTINUE
81 CONTINUE
DO 115 IGR=IGDEB,NGRP
DO 100 JGR=1,IGR-1
WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 100
IF(ITY.EQ.13) THEN
ALLOCATE(W(LL4))
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GAR2(1,JGR),W(1))
DO 85 I=1,LL4
GAR2(I,IGR)=GAR2(I,IGR)+W(I)
85 CONTINUE
DEALLOCATE(W)
ELSE
CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
DO 90 I=1,ILONG
GAR2(I,IGR)=GAR2(I,IGR)+AGAR(I)*GAR2(I,JGR)
90 CONTINUE
ENDIF
100 CONTINUE
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
*
CALL KDRCPU(TK1)
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
IF(NSTARD.EQ.0) THEN
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GAR2(1,IGR),NADI)
JTER=NADI
ELSE
* use a GMRES solution of the linear system
DERTOL=EPSINR
ISTATE(39)=IGR
CALL LCMPUT(IPFLUX,'STATE-VECTOR',NSTATE,1,ISTATE)
ALLOCATE(DWORK1(LL4),DWORK2(LL4))
DWORK1(:LL4)=GAR2(:LL4,IGR) ! source
DWORK2(:LL4)=WORK(:LL4,IGR,3) ! estimate of the flux
CALL FLDMRA(DWORK1,FLDONE,LL4,DERTOL,NSTARD,NADI,IMPX,
1 IPTRK,IPSYS,IPFLUX,DWORK2,JTER)
GAR2(:LL4,IGR)=REAL(DWORK2(:LL4))
DEALLOCATE(DWORK2,DWORK1)
ENDIF
DO 110 I=1,LL4
WORK(I,IGR,1)=WORK(I,IGR,2)
WORK(I,IGR,2)=WORK(I,IGR,3)
WORK(I,IGR,3)=GRAD1(I,IGR)+(WORK(I,IGR,2)-GAR2(I,IGR))
110 CONTINUE
115 CONTINUE
ENDIF
IF(MOD(ITER-2,NCTOT).GE.NCPTM) THEN
CALL FLD2AC(NGRP,LL4,IGDEB,WORK,ZMU)
ELSE
ZMU=1.0
ENDIF
IGDEBO=IGDEB
DO 130 IGR=IGDEBO,NGRP
GINN=0.0
FINN=0.0
DO 120 I=1,LL4
GINN=MAX(GINN,ABS(WORK(I,IGR,2)-WORK(I,IGR,3)))
FINN=MAX(FINN,ABS(WORK(I,IGR,3)))
120 CONTINUE
GINN=GINN/FINN
IF((GINN.LT.EPSINR).AND.(IGDEB.EQ.IGR)) IGDEB=IGDEB+1
130 CONTINUE
CALL KDRCPU(TK2)
TKT=TKT+(TK2-TK1)
IF(GINN.LT.EPSINR) TEXT3='YES'
IF(IMPX.GT.2) WRITE(6,1000) ITER,GINN,EPSINR,IGDEB,ZMU,TEXT3,
1 JTER
IF((GINN.LT.EPSINR).OR.(ITER.EQ.MAXINR)) EXIT
ITER=ITER+1
ENDDO
*----
* END OF THERMAL ITERATIONS
*----
DO 175 I=1,LL4
DO 170 IGR=1,NGRP
GRAD1(I,IGR)=WORK(I,IGR,3)
170 CONTINUE
175 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(GAR2,WORK)
RETURN
*
1000 FORMAT (10X,3HIN(,I3,6H) FLX:,5H PRC=,1P,E9.2,5H TAR=,E9.2,
1 7H IGDEB=, I13,6H ACCE=,0P,F12.5,12H CONVERGED=,A3,6H JTER=,
2 I4)
END
|