summaryrefslogtreecommitdiff
path: root/Trivac/src/FLDSPN.f
blob: a7b8618e88dc45681fb22a365703ac437df96456 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
*DECK FLDSPN
      SUBROUTINE FLDSPN(NAMP,IPTRK,IPSYS,LL4,NBMIX,NAN,S1,F1,NADI)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform NADI inner iterations with the ADI preconditionning.
* Special version for Thomas-Raviart basis (simplified PN).
*
*Copyright:
* Copyright (C) 2005 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NAMP    name of the ADI-splitted matrix.
* IPTRK   L_TRACK pointer to the tracking information.
* IPSYS   L_SYSTEM pointer to system matrices.
* LL4     order of the matrix.
* NBMIX   total number of material mixtures in the macrolib.
* NAN     number of Legendre orders in the cross sections.
* S1      source term of the linear system.
* F1      initial solution of the linear system.
* NADI    number of inner ADI iterations.
*
*Parameters: output
* F1      solution of the linear system after NADI iterations.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      CHARACTER NAMP*(*)
      TYPE(C_PTR) IPTRK,IPSYS
      INTEGER LL4,NBMIX,NAN,NADI
      REAL F1(LL4),S1(LL4)
*----
*  LOCAL VARIABLES
*----
      PARAMETER (NSTATE=40)
      CHARACTER NAMT*12,TEXT12*12
      INTEGER ITP(NSTATE)
      LOGICAL LMUX,DIAG,CHEX
      INTEGER, DIMENSION(:), ALLOCATABLE :: MAT,KN,IQFR
      REAL, DIMENSION(:), ALLOCATABLE :: VOL,QFR,XX,YY,ZZ,DIFF,T,GAR,
     1 FL,FW,FX,FY,FZ,GAMMA
      REAL, DIMENSION(:,:), ALLOCATABLE :: SIGT,SIGTI,R,V
      INTEGER C11W_LEN,C11X_LEN,C11Y_LEN,C11Z_LEN
      INTEGER, DIMENSION(:), POINTER :: IPERT,IPBW,MUW,IPVW,NBLW,LBLW,
     1 IPBX,MUX,IPVX,NBLX,LBLX,IPBY,MUY,IPVY,NBLY,LBLY,IPBZ,MUZ,IPVZ,
     2 NBLZ,LBLZ
      REAL, DIMENSION(:), POINTER :: TF,FRZ,BW,C11W,BX,C11X,BY,C11Y,BZ,
     1 C11Z
      DOUBLE PRECISION, DIMENSION(:), POINTER :: CTRAN
      TYPE(C_PTR) TF_PTR,FRZ_PTR,IPERT_PTR,CTRAN_PTR,
     1 BW_PTR,C11W_PTR,IPBW_PTR,MUW_PTR,IPVW_PTR,NBLW_PTR,LBLW_PTR,
     2 BX_PTR,C11X_PTR,IPBX_PTR,MUX_PTR,IPVX_PTR,NBLX_PTR,LBLX_PTR,
     3 BY_PTR,C11Y_PTR,IPBY_PTR,MUY_PTR,IPVY_PTR,NBLY_PTR,LBLY_PTR,
     4 BZ_PTR,C11Z_PTR,IPBZ_PTR,MUZ_PTR,IPVZ_PTR,NBLZ_PTR,LBLZ_PTR
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(SIGT(NBMIX,NAN),SIGTI(NBMIX,NAN))
*----
*  RECOVER PN SPECIFIC PARAMETERS.
*----
      NAMT=NAMP
      IF(NAMT(1:1).NE.'A') CALL XABORT('FLDSPN: ''A'' MATRIX EXPECTED.')
      READ(NAMT,'(1X,2I3)') IGR,JGR
      IF(IGR.NE.JGR) CALL XABORT('FLDSPN: INVALIB GROUP INDICES.')
      CALL LCMGET(IPTRK,'STATE-VECTOR',ITP)
      NREG=ITP(1)
      NUN=ITP(2)
      ITYPE=ITP(6)
      IELEM=ITP(9)
      ICOL=ITP(10)
      L4=ITP(11)
      LX=ITP(14)
      LZ=ITP(16)
      ISEG=ITP(17)
      LTSW=ITP(19)
      LL4F=ITP(25)
      LL4W=ITP(26)
      LL4X=ITP(27)
      LL4Y=ITP(28)
      LL4Z=ITP(29)
      NLF=ITP(30)
      NVD=ITP(34)
      CHEX=(ITYPE.EQ.8).OR.(ITYPE.EQ.9)
      IF(CHEX) THEN
         IOFW=LL4F
         IOFX=LL4F+LL4W
         IOFY=LL4F+LL4W+LL4X
         IOFZ=LL4F+LL4W+LL4X+LL4Y
         IF(NUN.GT.(LX*LZ+L4)*NLF/2) CALL XABORT('FLDSPN: INVALID NUN '
     1   //'OR L4.')
      ELSE
         IOFW=0
         IOFX=LL4F
         IOFY=LL4F+LL4X
         IOFZ=LL4F+LL4X+LL4Y
         IF(NUN.NE.L4*NLF/2) CALL XABORT('FLDSPN: INVALID NUN OR L4.')
      ENDIF
      IF(L4*NLF/2.NE.LL4) CALL XABORT('FLDSPN: INVALID L4 OR LL4.')
*----
*  RECOVER TRACKING-RELATED INFORMATIONS
*----
      ALLOCATE(MAT(NREG),VOL(NREG))
      CALL LCMGET(IPTRK,'MATCOD',MAT)
      CALL LCMGET(IPTRK,'VOLUME',VOL)
      CALL LCMLEN(IPTRK,'KN',MAXKN,ITYLCM)
      CALL LCMLEN(IPTRK,'QFR',MAXQF,ITYLCM)
      ALLOCATE(KN(MAXKN),QFR(MAXQF),IQFR(MAXQF))
      CALL LCMGET(IPTRK,'KN',KN)
      CALL LCMGET(IPTRK,'QFR',QFR)
      CALL LCMGET(IPTRK,'IQFR',IQFR)
      IF(CHEX) THEN
         CALL LCMGET(IPTRK,'SIDE',SIDE)
      ELSE
         ALLOCATE(XX(NREG),YY(NREG))
         CALL LCMGET(IPTRK,'XX',XX)
         CALL LCMGET(IPTRK,'YY',YY)
      ENDIF
      ALLOCATE(ZZ(NREG))
      CALL LCMGET(IPTRK,'ZZ',ZZ)
*----
*  PROCESS PHYSICAL ALBEDOS
*----
      TEXT12='ALBEDO-FU'//NAMT(2:4)
      CALL LCMLEN(IPSYS,TEXT12,NALBP,ITYLCM)
      IF(NALBP.GT.0) THEN
         ALLOCATE(GAMMA(NALBP))
         CALL LCMGET(IPSYS,TEXT12,GAMMA)
         DO IQW=1,MAXQF
            IALB=IQFR(IQW)
            IF(IALB.NE.0) QFR(IQW)=QFR(IQW)*GAMMA(IALB)
         ENDDO
         DEALLOCATE(GAMMA)
      ENDIF
*----
*  RECOVER THE CROSS SECTIONS.
*----
      DO 10 IL=1,NAN
      WRITE(TEXT12,'(4HSCAR,I2.2,A6)') IL-1,NAMT(2:7)
      CALL LCMGET(IPSYS,TEXT12,SIGT(1,IL))
      WRITE(TEXT12,'(4HSCAI,I2.2,A6)') IL-1,NAMT(2:7)
      CALL LCMGET(IPSYS,TEXT12,SIGTI(1,IL))
   10 CONTINUE
*----
*  RECOVER THE FINITE ELEMENT UNIT STIFFNESS MATRIX.
*----
      CALL LCMSIX(IPTRK,'BIVCOL',1)
      CALL LCMLEN(IPTRK,'T',LC,ITYLCM)
      ALLOCATE(R(LC,LC),V(LC,LC-1))
      CALL LCMGET(IPTRK,'R',R)
      CALL LCMGET(IPTRK,'V',V)
      CALL LCMSIX(IPTRK,' ',2)
*----
*  RECOVER INFORMATIONS RELATED TO SYSTEM MATRICES
*----
      CALL LCMLEN(IPTRK,'MUX',IDUM,ITYLCM)
      LMUX=(IDUM.NE.0).AND.(ITYLCM.EQ.1)
      DIAG=(LL4Y.GT.0).AND.(.NOT.LMUX)
      CALL LCMGPD(IPSYS,'TF'//NAMT,TF_PTR)
      CALL C_F_POINTER(TF_PTR,TF,(/ LL4F*NLF/2 /))
*
      NULLIFY(IPBW)
      NULLIFY(IPVW)
      NULLIFY(BW)
      NULLIFY(C11W)
      IF(LL4W.GT.0) THEN
         NBLOS=LX*LZ/3
         CALL LCMGPD(IPTRK,'CTRAN',CTRAN_PTR)
         CALL LCMGPD(IPTRK,'IPERT',IPERT_PTR)
         CALL LCMGPD(IPTRK,'FRZ',FRZ_PTR)
         CALL C_F_POINTER(CTRAN_PTR,CTRAN,(/ ((IELEM+1)*IELEM)**2 /))
         CALL C_F_POINTER(IPERT_PTR,IPERT,(/ NBLOS /))
         CALL C_F_POINTER(FRZ_PTR,FRZ,(/ NBLOS /))
*
         CALL LCMGPD(IPTRK,'IPBBW',IPBW_PTR)
         CALL LCMLEN(IPSYS,'WB',LENWB,ITYL)
         IF(LENWB.EQ.0) THEN
           CALL LCMGPD(IPTRK,'WB',BW_PTR)
         ELSE
           CALL LCMGPD(IPSYS,'WB',BW_PTR)
         ENDIF
         CALL C_F_POINTER(IPBW_PTR,IPBW,(/ 2*IELEM*LL4W /))
         CALL C_F_POINTER(BW_PTR,BW,(/ 2*IELEM*LL4W /))
         CALL LCMLEN(IPSYS,'WI'//NAMT,C11W_LEN,ITYLCM)
         CALL LCMGPD(IPSYS,'WI'//NAMT,C11W_PTR)
         IF(ISEG.EQ.0) THEN
*           SCALAR SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
            CALL LCMGPD(IPTRK,'MUW',MUW_PTR)
            CALL C_F_POINTER(MUW_PTR,MUW,(/ LL4W /))
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
            CALL LCMGET(IPTRK,'LL4VW',LL4VW)
            CALL LCMGPD(IPTRK,'MUVW',MUW_PTR)
            CALL LCMGPD(IPTRK,'IPVW',IPVW_PTR)
            CALL LCMLEN(IPTRK,'NBLW',LONW,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLW',NBLW_PTR)
            CALL LCMGPD(IPTRK,'LBLW',LBLW_PTR)
            CALL C_F_POINTER(MUW_PTR,MUW,(/ LL4VW/ISEG /))
            CALL C_F_POINTER(IPVW_PTR,IPVW,(/ LL4W /))
            CALL C_F_POINTER(NBLW_PTR,NBLW,(/ LONW /))
            CALL C_F_POINTER(LBLW_PTR,LBLW,(/ LONW /))
         ENDIF
         CALL C_F_POINTER(C11W_PTR,C11W,(/ C11W_LEN /))
      ENDIF
      CALL LCMGPD(IPTRK,'IPBBX',IPBX_PTR)
      CALL LCMLEN(IPSYS,'XB',LENXB,ITYL)
      IF(LENXB.EQ.0) THEN
        CALL LCMGPD(IPTRK,'XB',BX_PTR)
      ELSE
        CALL LCMGPD(IPSYS,'XB',BX_PTR)
      ENDIF
      CALL C_F_POINTER(IPBX_PTR,IPBX,(/ 2*IELEM*LL4X /))
      CALL C_F_POINTER(BX_PTR,BX,(/ 2*IELEM*LL4X /))
      NULLIFY(IPVX)
      IF(DIAG) THEN
         CALL LCMLEN(IPSYS,'YI'//NAMT,C11X_LEN,ITYLCM)
         CALL LCMGPD(IPSYS,'YI'//NAMT,C11X_PTR)
         IF(ISEG.EQ.0) THEN
*           SCALAR SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
            CALL LCMGPD(IPTRK,'MUY',MUX_PTR)
            CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4X /))
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
            CALL LCMGET(IPTRK,'LL4VY',LL4VX)
            CALL LCMGPD(IPTRK,'MUVY',MUX_PTR)
            CALL LCMGPD(IPTRK,'IPVY',IPVX_PTR)
            CALL LCMLEN(IPTRK,'NBLY',LONX,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLY',NBLX_PTR)
            CALL LCMGPD(IPTRK,'LBLY',LBLX_PTR)
            CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4VX/ISEG /))
            CALL C_F_POINTER(IPVX_PTR,IPVX,(/ LL4X /))
            CALL C_F_POINTER(NBLX_PTR,NBLX,(/ LONX /))
            CALL C_F_POINTER(LBLX_PTR,LBLX,(/ LONX /))
         ENDIF
      ELSE
         CALL LCMLEN(IPSYS,'XI'//NAMT,C11X_LEN,ITYLCM)
         CALL LCMGPD(IPSYS,'XI'//NAMT,C11X_PTR)
         IF(ISEG.EQ.0) THEN
*           SCALAR SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
            CALL LCMGPD(IPTRK,'MUX',MUX_PTR)
            CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4X /))
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
            CALL LCMGET(IPTRK,'LL4VX',LL4VX)
            CALL LCMGPD(IPTRK,'MUVX',MUX_PTR)
            CALL LCMGPD(IPTRK,'IPVX',IPVX_PTR)
            CALL LCMLEN(IPTRK,'NBLX',LONX,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLX',NBLX_PTR)
            CALL LCMGPD(IPTRK,'LBLX',LBLX_PTR)
            CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4VX/ISEG /))
            CALL C_F_POINTER(IPVX_PTR,IPVX,(/ LL4X /))
            CALL C_F_POINTER(NBLX_PTR,NBLX,(/ LONX /))
            CALL C_F_POINTER(LBLX_PTR,LBLX,(/ LONX /))
         ENDIF
      ENDIF
      CALL C_F_POINTER(C11X_PTR,C11X,(/ C11X_LEN /))
      NULLIFY(IPBY)
      NULLIFY(IPVY)
      NULLIFY(BY)
      NULLIFY(C11Y)
      IF(LL4Y.GT.0) THEN
         CALL LCMGPD(IPTRK,'IPBBY',IPBY_PTR)
         CALL LCMLEN(IPSYS,'YB',LENYB,ITYL)
         IF(LENYB.EQ.0) THEN
            CALL LCMGPD(IPTRK,'YB',BY_PTR)
         ELSE
            CALL LCMGPD(IPSYS,'YB',BY_PTR)
         ENDIF
         CALL C_F_POINTER(IPBY_PTR,IPBY,(/ 2*IELEM*LL4Y /))
         CALL C_F_POINTER(BY_PTR,BY,(/ 2*IELEM*LL4Y /))
         CALL LCMLEN(IPSYS,'YI'//NAMT,C11Y_LEN,ITYLCM)
         CALL LCMGPD(IPSYS,'YI'//NAMT,C11Y_PTR)
         IF(ISEG.EQ.0) THEN
*           SCALAR SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
            CALL LCMGPD(IPTRK,'MUY',MUY_PTR)
            CALL C_F_POINTER(MUY_PTR,MUY,(/ LL4Y /))
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
            CALL LCMGET(IPTRK,'LL4VY',LL4VY)
            CALL LCMGPD(IPTRK,'MUVY',MUY_PTR)
            CALL LCMGPD(IPTRK,'IPVY',IPVY_PTR)
            CALL LCMLEN(IPTRK,'NBLY',LONY,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLY',NBLY_PTR)
            CALL LCMGPD(IPTRK,'LBLY',LBLY_PTR)
            CALL C_F_POINTER(MUY_PTR,MUY,(/ LL4VY/ISEG /))
            CALL C_F_POINTER(IPVY_PTR,IPVY,(/ LL4Y /))
            CALL C_F_POINTER(NBLY_PTR,NBLY,(/ LONY /))
            CALL C_F_POINTER(LBLY_PTR,LBLY,(/ LONY /))
         ENDIF
         CALL C_F_POINTER(C11Y_PTR,C11Y,(/ C11Y_LEN /))
      ENDIF
      NULLIFY(IPBZ)
      NULLIFY(IPVZ)
      NULLIFY(BZ)
      NULLIFY(C11Z)
      IF(LL4Z.GT.0) THEN
         CALL LCMGPD(IPTRK,'IPBBZ',IPBZ_PTR)
         CALL LCMLEN(IPSYS,'ZB',LENZB,ITYL)
         IF(LENZB.EQ.0) THEN
            CALL LCMGPD(IPTRK,'ZB',BZ_PTR)
         ELSE
            CALL LCMGPD(IPSYS,'ZB',BZ_PTR)
         ENDIF
         CALL C_F_POINTER(IPBZ_PTR,IPBZ,(/ 2*IELEM*LL4Z /))
         CALL C_F_POINTER(BZ_PTR,BZ,(/ 2*IELEM*LL4Z /))
         CALL LCMLEN(IPSYS,'ZI'//NAMT,C11Z_LEN,ITYLCM)
         CALL LCMGPD(IPSYS,'ZI'//NAMT,C11Z_PTR)
         IF(ISEG.EQ.0) THEN
*           SCALAR SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
            CALL LCMGPD(IPTRK,'MUZ',MUZ_PTR)
            CALL C_F_POINTER(MUZ_PTR,MUZ,(/ LL4Z /))
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
            CALL LCMGET(IPTRK,'LL4VZ',LL4VZ)
            CALL LCMGPD(IPTRK,'MUVZ',MUZ_PTR)
            CALL LCMGPD(IPTRK,'IPVZ',IPVZ_PTR)
            CALL LCMLEN(IPTRK,'NBLZ',LONZ,ITYLCM)
            CALL LCMGPD(IPTRK,'NBLZ',NBLZ_PTR)
            CALL LCMGPD(IPTRK,'LBLZ',LBLZ_PTR)
            CALL C_F_POINTER(MUZ_PTR,MUZ,(/ LL4VZ/ISEG /))
            CALL C_F_POINTER(IPVZ_PTR,IPVZ,(/ LL4Z /))
            CALL C_F_POINTER(NBLZ_PTR,NBLZ,(/ LONZ /))
            CALL C_F_POINTER(LBLZ_PTR,LBLZ,(/ LONZ /))
         ENDIF
         CALL C_F_POINTER(C11Z_PTR,C11Z,(/ C11Z_LEN /))
      ENDIF
      IF(CHEX) THEN
         NBLOS=LX*LZ/3
         ALLOCATE(DIFF(NBLOS))
      ENDIF
*----
*  PERFORM ADI ITERATIONS AND LEGENDRE ORDER SWAPPING
*----
      ALLOCATE(FL(LL4F),FX(LL4X))
      IF(LL4W.GT.0) ALLOCATE(FW(LL4W))
      IF(LL4Y.GT.0) ALLOCATE(FY(LL4Y))
      IF(LL4Z.GT.0) ALLOCATE(FZ(LL4Z))
      IF(ISEG.GT.0) ALLOCATE(T(ISEG))
      DO 615 IADI=1,NADI
      DO 610 IL=0,NLF-1
      JOFF=(IL/2)*L4
      IF(MOD(IL,2).EQ.0) THEN
         DO 21 I0=1,LL4X
         FX(I0)=F1(JOFF+IOFX+I0)
   21    CONTINUE
         DO 22 I0=1,LL4Y
         FY(I0)=F1(JOFF+IOFY+I0)
   22    CONTINUE
         DO 23 I0=1,LL4Z
         FZ(I0)=F1(JOFF+IOFZ+I0)
   23    CONTINUE
      ENDIF
      IF(CHEX) THEN
         NBLOS=LX*LZ/3
         CALL PNFH3E(IL,NBMIX,NBLOS,IELEM,ICOL,NLF,NVD,NAN,L4,LL4F,
     1   MAT,SIGTI,SIDE,ZZ,FRZ,QFR,IPERT,KN,LC,R,V,S1,F1)
      ELSE
         CALL PNFL3E(IL,NREG,IELEM,ICOL,XX,YY,ZZ,MAT,VOL,NBMIX,NLF,
     1   NVD,NAN,SIGTI,L4,KN,QFR,LC,R,V,S1,F1)
      ENDIF
      IF(MOD(IL,2).EQ.1) THEN
*----
*  RECOVER CROSS SECTIONS FOR THE PIOLAT TERMS.
*----
         IF(CHEX) THEN
            NBLOS=LX*LZ/3
            FACT=REAL(2*IL+1)
            DO 25 KEL=1,NBLOS
            DIFF(KEL)=0.0
            IF(IPERT(KEL).GT.0) THEN
               IBM=MAT((IPERT(KEL)-1)*3+1)
               IF(IBM.GT.0) THEN
                  GARS=SIGT(IBM,MIN(IL+1,NAN))
                  IOF=(IPERT(KEL)-1)*3+1
                  DIFF(KEL)=FACT*ZZ(IOF)*FRZ(KEL)*GARS
               ENDIF
            ENDIF
   25       CONTINUE
         ENDIF
*----
*  W DIRECTION
*----
         IF(LL4W.GT.0) THEN
            NBLOS=LX*LZ/3
            DO 30 I0=1,LL4F
            FL(I0)=F1(JOFF+I0)
   30       CONTINUE
            DO 50 I0=1,LL4X
            DO 40 J0=1,2*IELEM
            JJ=IPBX((I0-1)*2*IELEM+J0)
            IF(JJ.EQ.0) GO TO 50
            FL(JJ)=FL(JJ)-BX((I0-1)*2*IELEM+J0)*REAL(IL)*FX(I0)
   40       CONTINUE
   50       CONTINUE
            DO 70 I0=1,LL4Y
            DO 60 J0=1,2*IELEM
            JJ=IPBY((I0-1)*2*IELEM+J0)
            IF(JJ.EQ.0) GO TO 70
            FL(JJ)=FL(JJ)-BY((I0-1)*2*IELEM+J0)*REAL(IL)*FY(I0)
   60       CONTINUE
   70       CONTINUE
            DO 90 I0=1,LL4Z
            DO 80 J0=1,2*IELEM
            JJ=IPBZ((I0-1)*2*IELEM+J0)
            IF(JJ.EQ.0) GO TO 90
            FL(JJ)=FL(JJ)-BZ((I0-1)*2*IELEM+J0)*REAL(IL)*FZ(I0)
   80       CONTINUE
   90       CONTINUE
            DO 115 I0=1,LL4W
            GGW=-F1(JOFF+IOFW+I0)
            DO 100 J0=1,2*IELEM
            JJ=IPBW((I0-1)*2*IELEM+J0)
            IF(JJ.EQ.0) GO TO 110
            GGW=GGW+BW((I0-1)*2*IELEM+J0)*REAL(IL)*
     1          FL(JJ)/TF((IL/2)*LL4F+JJ)
  100       CONTINUE
  110       FW(I0)=GGW
  115       CONTINUE
*
*           PIOLAT TRANSFORM TERM.
            CALL FLDPWY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
     1      FY,FW)
            CALL FLDPWX(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,FX,FW)
            MUMAX=MUW(LL4W)
            IF(ISEG.EQ.0) THEN
*              SCALAR SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
               CALL ALLDLS(LL4W,MUW,C11W(1+(IL/2)*MUMAX),FW)
            ELSE IF(ISEG.GT.0) THEN
*              SUPERVECTORIAL SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
               ALLOCATE(GAR(LL4VW))
               GAR(:LL4VW)=0.0
               DO 120 I=1,LL4W
               GAR(IPVW(I))=FW(I)
  120          CONTINUE
               CALL ALVDLS(LTSW,MUW,C11W(1+(IL/2)*MUMAX),GAR,ISEG,LONW,
     1         NBLW,LBLW,T)
               DO 130 I=1,LL4W
               FW(I)=GAR(IPVW(I))
  130          CONTINUE
               DEALLOCATE(GAR)
            ENDIF
         ENDIF
*----
*  X DIRECTION
*----
         DO 140 I0=1,LL4F
         FL(I0)=F1(JOFF+I0)
  140    CONTINUE
         DO 160 I0=1,LL4W
         DO 150 J0=1,2*IELEM
         JJ=IPBW((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 160
         FL(JJ)=FL(JJ)-BW((I0-1)*2*IELEM+J0)*REAL(IL)*FW(I0)
  150    CONTINUE
  160    CONTINUE
         DO 180 I0=1,LL4Y
         DO 170 J0=1,2*IELEM
         JJ=IPBY((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 180
         FL(JJ)=FL(JJ)-BY((I0-1)*2*IELEM+J0)*REAL(IL)*FY(I0)
  170    CONTINUE
  180    CONTINUE
         DO 200 I0=1,LL4Z
         DO 190 J0=1,2*IELEM
         JJ=IPBZ((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 200
         FL(JJ)=FL(JJ)-BZ((I0-1)*2*IELEM+J0)*REAL(IL)*FZ(I0)
  190    CONTINUE
  200    CONTINUE
         DO 225 I0=1,LL4X
         GGX=-F1(JOFF+IOFX+I0)
         DO 210 J0=1,2*IELEM
         JJ=IPBX((I0-1)*2*IELEM+J0)
         IF(JJ.EQ.0) GO TO 220
         GGX=GGX+BX((I0-1)*2*IELEM+J0)*REAL(IL)*FL(JJ)/
     1       TF((IL/2)*LL4F+JJ)
  210    CONTINUE
  220    FX(I0)=GGX
  225    CONTINUE
         IF(LL4W.GT.0) THEN
*           PIOLAT TRANSFORM TERM.
            NBLOS=LX*LZ/3
            CALL FLDPXW(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,FW,
     1      FX)
            CALL FLDPXY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
     1      DIFF,FY,FX)
         ENDIF
         MUMAX=MUX(LL4X)
         IF(ISEG.EQ.0) THEN
*           SCALAR SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
            CALL ALLDLS(LL4X,MUX,C11X(1+(IL/2)*MUMAX),FX)
         ELSE IF(ISEG.GT.0) THEN
*           SUPERVECTORIAL SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
            ALLOCATE(GAR(LL4VX))
            GAR(:LL4VX)=0.0
            DO 230 I=1,LL4X
            GAR(IPVX(I))=FX(I)
  230       CONTINUE
            CALL ALVDLS(LTSW,MUX,C11X(1+(IL/2)*MUMAX),GAR,ISEG,LONX,
     1      NBLX,LBLX,T)
            DO 240 I=1,LL4X
            FX(I)=GAR(IPVX(I))
  240       CONTINUE
            DEALLOCATE(GAR)
         ENDIF
*----
*  Y DIRECTION
*----
         IF(LL4Y.GT.0) THEN
            DO 250 I0=1,LL4F
            FL(I0)=F1(JOFF+I0)
  250       CONTINUE
            DO 270 I0=1,LL4W
            DO 260 J0=1,2*IELEM
            JJ=IPBW((I0-1)*2*IELEM+J0)
            IF(JJ.EQ.0) GO TO 270
            FL(JJ)=FL(JJ)-BW((I0-1)*2*IELEM+J0)*REAL(IL)*FW(I0)
  260       CONTINUE
  270       CONTINUE
            DO 290 I0=1,LL4X
            DO 280 J0=1,2*IELEM
            JJ=IPBX((I0-1)*2*IELEM+J0)
            IF(JJ.EQ.0) GO TO 290
            FL(JJ)=FL(JJ)-BX((I0-1)*2*IELEM+J0)*REAL(IL)*FX(I0)
  280       CONTINUE
  290       CONTINUE
            DO 310 I0=1,LL4Z
            DO 300 J0=1,2*IELEM
            JJ=IPBZ((I0-1)*2*IELEM+J0)
            IF(JJ.EQ.0) GO TO 310
            FL(JJ)=FL(JJ)-BZ((I0-1)*2*IELEM+J0)*REAL(IL)*FZ(I0)
  300       CONTINUE
  310       CONTINUE
            DO 335 I0=1,LL4Y
            GGY=-F1(JOFF+IOFY+I0)
            DO 320 J0=1,2*IELEM
            JJ=IPBY((I0-1)*2*IELEM+J0)
            IF(JJ.EQ.0) GO TO 330
            GGY=GGY+BY((I0-1)*2*IELEM+J0)*REAL(IL)*
     1          FL(JJ)/TF((IL/2)*LL4F+JJ)
  320       CONTINUE
  330       FY(I0)=GGY
  335       CONTINUE
            IF(LL4W.GT.0) THEN
*              PIOLAT TRANSFORM TERM.
               NBLOS=LX*LZ/3
               CALL FLDPYX(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
     1         DIFF,FX,FY)
               CALL FLDPYW(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
     1         DIFF,FW,FY)
            ENDIF
            MUMAX=MUY(LL4Y)
            IF(ISEG.EQ.0) THEN
*              SCALAR SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
               CALL ALLDLS(LL4Y,MUY,C11Y(1+(IL/2)*MUMAX),FY)
            ELSE IF(ISEG.GT.0) THEN
*              SUPERVECTORIAL SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
               ALLOCATE(GAR(LL4VY))
               GAR(:LL4VY)=0.0
               DO 340 I=1,LL4Y
               GAR(IPVY(I))=FY(I)
  340          CONTINUE
               CALL ALVDLS(LTSW,MUY,C11Y(1+(IL/2)*MUMAX),GAR,ISEG,LONY,
     1         NBLY,LBLY,T)
               DO 350 I=1,LL4Y
               FY(I)=GAR(IPVY(I))
  350          CONTINUE
               DEALLOCATE(GAR)
            ENDIF
         ENDIF
*----
*  Z DIRECTION
*----
         IF(LL4Z.GT.0) THEN
            DO 360 I0=1,LL4F
            FL(I0)=F1(JOFF+I0)
  360       CONTINUE
            DO 380 I0=1,LL4W
            DO 370 J0=1,2*IELEM
            JJ=IPBW((I0-1)*2*IELEM+J0)
            IF(JJ.EQ.0) GO TO 380
            FL(JJ)=FL(JJ)-BW((I0-1)*2*IELEM+J0)*REAL(IL)*FW(I0)
  370       CONTINUE
  380       CONTINUE
            DO 400 I0=1,LL4X
            DO 390 J0=1,2*IELEM
            JJ=IPBX((I0-1)*2*IELEM+J0)
            IF(JJ.EQ.0) GO TO 400
            FL(JJ)=FL(JJ)-BX((I0-1)*2*IELEM+J0)*REAL(IL)*FX(I0)
  390       CONTINUE
  400       CONTINUE
            DO 420 I0=1,LL4Y
            DO 410 J0=1,2*IELEM
            JJ=IPBY((I0-1)*2*IELEM+J0)
            IF(JJ.EQ.0) GO TO 420
            FL(JJ)=FL(JJ)-BY((I0-1)*2*IELEM+J0)*REAL(IL)*FY(I0)
  410       CONTINUE
  420       CONTINUE
            DO 445 I0=1,LL4Z
            GGZ=-F1(JOFF+IOFZ+I0)
            DO 430 J0=1,2*IELEM
            JJ=IPBZ((I0-1)*2*IELEM+J0)
            IF(JJ.EQ.0) GO TO 440
            GGZ=GGZ+BZ((I0-1)*2*IELEM+J0)*REAL(IL)*
     1          FL(JJ)/TF((IL/2)*LL4F+JJ)
  430       CONTINUE
  440       FZ(I0)=GGZ
  445       CONTINUE
            MUMAX=MUZ(LL4Z)
            IF(ISEG.EQ.0) THEN
*              SCALAR SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
               CALL ALLDLS(LL4Z,MUZ,C11Z(1+(IL/2)*MUMAX),FZ)
            ELSE IF(ISEG.GT.0) THEN
*              SUPERVECTORIAL SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
               ALLOCATE(GAR(LL4VZ))
               GAR(:LL4VZ)=0.0
               DO 450 I=1,LL4Z
               GAR(IPVZ(I))=FZ(I)
  450          CONTINUE
               CALL ALVDLS(LTSW,MUZ,C11Z(1+(IL/2)*MUMAX),GAR,ISEG,LONZ,
     1         NBLZ,LBLZ,T)
               DO 460 I=1,LL4Z
               FZ(I)=GAR(IPVZ(I))
  460          CONTINUE
               DEALLOCATE(GAR)
            ENDIF
         ENDIF
*----
*  COMPUTE FLUX AND RECOVER CURRENTS
*----
         DO 470 I0=1,LL4F
         FL(I0)=F1(JOFF+I0)
  470    CONTINUE
         DO 490 J0=1,LL4W
         DO 480 I0=1,2*IELEM
         II=IPBW((J0-1)*2*IELEM+I0)
         IF(II.EQ.0) GO TO 490
         FL(II)=FL(II)-BW((J0-1)*2*IELEM+I0)*REAL(IL)*FW(J0)
  480    CONTINUE
  490    CONTINUE
         DO 510 J0=1,LL4X
         DO 500 I0=1,2*IELEM
         II=IPBX((J0-1)*2*IELEM+I0)
         IF(II.EQ.0) GO TO 510
         FL(II)=FL(II)-BX((J0-1)*2*IELEM+I0)*REAL(IL)*FX(J0)
  500    CONTINUE
  510    CONTINUE
         DO 530 J0=1,LL4Y
         DO 520 I0=1,2*IELEM
         II=IPBY((J0-1)*2*IELEM+I0)
         IF(II.EQ.0) GO TO 530
         FL(II)=FL(II)-BY((J0-1)*2*IELEM+I0)*REAL(IL)*FY(J0)
  520    CONTINUE
  530    CONTINUE
         DO 550 J0=1,LL4Z
         DO 540 I0=1,2*IELEM
         II=IPBZ((J0-1)*2*IELEM+I0)
         IF(II.EQ.0) GO TO 550
         FL(II)=FL(II)-BZ((J0-1)*2*IELEM+I0)*REAL(IL)*FZ(J0)
  540    CONTINUE
  550    CONTINUE
         DO 560 I0=1,LL4F
         F1(JOFF+I0)=FL(I0)/TF((IL/2)*LL4F+I0)
  560    CONTINUE
         IF(LL4W.GT.0) THEN
            DO 570 I0=1,LL4W
            F1(JOFF+IOFW+I0)=FW(I0)
  570       CONTINUE
         ENDIF
         DO 580 I0=1,LL4X
         F1(JOFF+IOFX+I0)=FX(I0)
  580    CONTINUE
         IF(LL4Y.GT.0) THEN
            DO 590 I0=1,LL4Y
            F1(JOFF+IOFY+I0)=FY(I0)
  590       CONTINUE
         ENDIF
         IF(LL4Z.GT.0) THEN
            DO 600 I0=1,LL4Z
            F1(JOFF+IOFZ+I0)=FZ(I0)
  600       CONTINUE
         ENDIF
      ENDIF
  610 CONTINUE
  615 CONTINUE
      IF(ISEG.GT.0) DEALLOCATE(T)
      DEALLOCATE(FL,FX)
      IF(LL4W.GT.0) DEALLOCATE(FW)
      IF(LL4Y.GT.0) DEALLOCATE(FY)
      IF(LL4Z.GT.0) DEALLOCATE(FZ)
      IF(.NOT.CHEX) DEALLOCATE(YY,XX)
      DEALLOCATE(V,R,ZZ,IQFR,QFR,KN,VOL,MAT)
      IF(CHEX) DEALLOCATE(DIFF)
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(SIGT,SIGTI)
      RETURN
      END