1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
|
*DECK FLDSPN
SUBROUTINE FLDSPN(NAMP,IPTRK,IPSYS,LL4,NBMIX,NAN,S1,F1,NADI)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform NADI inner iterations with the ADI preconditionning.
* Special version for Thomas-Raviart basis (simplified PN).
*
*Copyright:
* Copyright (C) 2005 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NAMP name of the ADI-splitted matrix.
* IPTRK L_TRACK pointer to the tracking information.
* IPSYS L_SYSTEM pointer to system matrices.
* LL4 order of the matrix.
* NBMIX total number of material mixtures in the macrolib.
* NAN number of Legendre orders in the cross sections.
* S1 source term of the linear system.
* F1 initial solution of the linear system.
* NADI number of inner ADI iterations.
*
*Parameters: output
* F1 solution of the linear system after NADI iterations.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
CHARACTER NAMP*(*)
TYPE(C_PTR) IPTRK,IPSYS
INTEGER LL4,NBMIX,NAN,NADI
REAL F1(LL4),S1(LL4)
*----
* LOCAL VARIABLES
*----
PARAMETER (NSTATE=40)
CHARACTER NAMT*12,TEXT12*12
INTEGER ITP(NSTATE)
LOGICAL LMUX,DIAG,CHEX
INTEGER, DIMENSION(:), ALLOCATABLE :: MAT,KN,IQFR
REAL, DIMENSION(:), ALLOCATABLE :: VOL,QFR,XX,YY,ZZ,DIFF,T,GAR,
1 FL,FW,FX,FY,FZ,GAMMA
REAL, DIMENSION(:,:), ALLOCATABLE :: SIGT,SIGTI,R,V
INTEGER C11W_LEN,C11X_LEN,C11Y_LEN,C11Z_LEN
INTEGER, DIMENSION(:), POINTER :: IPERT,IPBW,MUW,IPVW,NBLW,LBLW,
1 IPBX,MUX,IPVX,NBLX,LBLX,IPBY,MUY,IPVY,NBLY,LBLY,IPBZ,MUZ,IPVZ,
2 NBLZ,LBLZ
REAL, DIMENSION(:), POINTER :: TF,FRZ,BW,C11W,BX,C11X,BY,C11Y,BZ,
1 C11Z
DOUBLE PRECISION, DIMENSION(:), POINTER :: CTRAN
TYPE(C_PTR) TF_PTR,FRZ_PTR,IPERT_PTR,CTRAN_PTR,
1 BW_PTR,C11W_PTR,IPBW_PTR,MUW_PTR,IPVW_PTR,NBLW_PTR,LBLW_PTR,
2 BX_PTR,C11X_PTR,IPBX_PTR,MUX_PTR,IPVX_PTR,NBLX_PTR,LBLX_PTR,
3 BY_PTR,C11Y_PTR,IPBY_PTR,MUY_PTR,IPVY_PTR,NBLY_PTR,LBLY_PTR,
4 BZ_PTR,C11Z_PTR,IPBZ_PTR,MUZ_PTR,IPVZ_PTR,NBLZ_PTR,LBLZ_PTR
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(SIGT(NBMIX,NAN),SIGTI(NBMIX,NAN))
*----
* RECOVER PN SPECIFIC PARAMETERS.
*----
NAMT=NAMP
IF(NAMT(1:1).NE.'A') CALL XABORT('FLDSPN: ''A'' MATRIX EXPECTED.')
READ(NAMT,'(1X,2I3)') IGR,JGR
IF(IGR.NE.JGR) CALL XABORT('FLDSPN: INVALIB GROUP INDICES.')
CALL LCMGET(IPTRK,'STATE-VECTOR',ITP)
NREG=ITP(1)
NUN=ITP(2)
ITYPE=ITP(6)
IELEM=ITP(9)
ICOL=ITP(10)
L4=ITP(11)
LX=ITP(14)
LZ=ITP(16)
ISEG=ITP(17)
LTSW=ITP(19)
LL4F=ITP(25)
LL4W=ITP(26)
LL4X=ITP(27)
LL4Y=ITP(28)
LL4Z=ITP(29)
NLF=ITP(30)
NVD=ITP(34)
CHEX=(ITYPE.EQ.8).OR.(ITYPE.EQ.9)
IF(CHEX) THEN
IOFW=LL4F
IOFX=LL4F+LL4W
IOFY=LL4F+LL4W+LL4X
IOFZ=LL4F+LL4W+LL4X+LL4Y
IF(NUN.GT.(LX*LZ+L4)*NLF/2) CALL XABORT('FLDSPN: INVALID NUN '
1 //'OR L4.')
ELSE
IOFW=0
IOFX=LL4F
IOFY=LL4F+LL4X
IOFZ=LL4F+LL4X+LL4Y
IF(NUN.NE.L4*NLF/2) CALL XABORT('FLDSPN: INVALID NUN OR L4.')
ENDIF
IF(L4*NLF/2.NE.LL4) CALL XABORT('FLDSPN: INVALID L4 OR LL4.')
*----
* RECOVER TRACKING-RELATED INFORMATIONS
*----
ALLOCATE(MAT(NREG),VOL(NREG))
CALL LCMGET(IPTRK,'MATCOD',MAT)
CALL LCMGET(IPTRK,'VOLUME',VOL)
CALL LCMLEN(IPTRK,'KN',MAXKN,ITYLCM)
CALL LCMLEN(IPTRK,'QFR',MAXQF,ITYLCM)
ALLOCATE(KN(MAXKN),QFR(MAXQF),IQFR(MAXQF))
CALL LCMGET(IPTRK,'KN',KN)
CALL LCMGET(IPTRK,'QFR',QFR)
CALL LCMGET(IPTRK,'IQFR',IQFR)
IF(CHEX) THEN
CALL LCMGET(IPTRK,'SIDE',SIDE)
ELSE
ALLOCATE(XX(NREG),YY(NREG))
CALL LCMGET(IPTRK,'XX',XX)
CALL LCMGET(IPTRK,'YY',YY)
ENDIF
ALLOCATE(ZZ(NREG))
CALL LCMGET(IPTRK,'ZZ',ZZ)
*----
* PROCESS PHYSICAL ALBEDOS
*----
TEXT12='ALBEDO-FU'//NAMT(2:4)
CALL LCMLEN(IPSYS,TEXT12,NALBP,ITYLCM)
IF(NALBP.GT.0) THEN
ALLOCATE(GAMMA(NALBP))
CALL LCMGET(IPSYS,TEXT12,GAMMA)
DO IQW=1,MAXQF
IALB=IQFR(IQW)
IF(IALB.NE.0) QFR(IQW)=QFR(IQW)*GAMMA(IALB)
ENDDO
DEALLOCATE(GAMMA)
ENDIF
*----
* RECOVER THE CROSS SECTIONS.
*----
DO 10 IL=1,NAN
WRITE(TEXT12,'(4HSCAR,I2.2,A6)') IL-1,NAMT(2:7)
CALL LCMGET(IPSYS,TEXT12,SIGT(1,IL))
WRITE(TEXT12,'(4HSCAI,I2.2,A6)') IL-1,NAMT(2:7)
CALL LCMGET(IPSYS,TEXT12,SIGTI(1,IL))
10 CONTINUE
*----
* RECOVER THE FINITE ELEMENT UNIT STIFFNESS MATRIX.
*----
CALL LCMSIX(IPTRK,'BIVCOL',1)
CALL LCMLEN(IPTRK,'T',LC,ITYLCM)
ALLOCATE(R(LC,LC),V(LC,LC-1))
CALL LCMGET(IPTRK,'R',R)
CALL LCMGET(IPTRK,'V',V)
CALL LCMSIX(IPTRK,' ',2)
*----
* RECOVER INFORMATIONS RELATED TO SYSTEM MATRICES
*----
CALL LCMLEN(IPTRK,'MUX',IDUM,ITYLCM)
LMUX=(IDUM.NE.0).AND.(ITYLCM.EQ.1)
DIAG=(LL4Y.GT.0).AND.(.NOT.LMUX)
CALL LCMGPD(IPSYS,'TF'//NAMT,TF_PTR)
CALL C_F_POINTER(TF_PTR,TF,(/ LL4F*NLF/2 /))
*
NULLIFY(IPBW)
NULLIFY(IPVW)
NULLIFY(BW)
NULLIFY(C11W)
IF(LL4W.GT.0) THEN
NBLOS=LX*LZ/3
CALL LCMGPD(IPTRK,'CTRAN',CTRAN_PTR)
CALL LCMGPD(IPTRK,'IPERT',IPERT_PTR)
CALL LCMGPD(IPTRK,'FRZ',FRZ_PTR)
CALL C_F_POINTER(CTRAN_PTR,CTRAN,(/ ((IELEM+1)*IELEM)**2 /))
CALL C_F_POINTER(IPERT_PTR,IPERT,(/ NBLOS /))
CALL C_F_POINTER(FRZ_PTR,FRZ,(/ NBLOS /))
*
CALL LCMGPD(IPTRK,'IPBBW',IPBW_PTR)
CALL LCMLEN(IPSYS,'WB',LENWB,ITYL)
IF(LENWB.EQ.0) THEN
CALL LCMGPD(IPTRK,'WB',BW_PTR)
ELSE
CALL LCMGPD(IPSYS,'WB',BW_PTR)
ENDIF
CALL C_F_POINTER(IPBW_PTR,IPBW,(/ 2*IELEM*LL4W /))
CALL C_F_POINTER(BW_PTR,BW,(/ 2*IELEM*LL4W /))
CALL LCMLEN(IPSYS,'WI'//NAMT,C11W_LEN,ITYLCM)
CALL LCMGPD(IPSYS,'WI'//NAMT,C11W_PTR)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
CALL LCMGPD(IPTRK,'MUW',MUW_PTR)
CALL C_F_POINTER(MUW_PTR,MUW,(/ LL4W /))
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
CALL LCMGET(IPTRK,'LL4VW',LL4VW)
CALL LCMGPD(IPTRK,'MUVW',MUW_PTR)
CALL LCMGPD(IPTRK,'IPVW',IPVW_PTR)
CALL LCMLEN(IPTRK,'NBLW',LONW,ITYLCM)
CALL LCMGPD(IPTRK,'NBLW',NBLW_PTR)
CALL LCMGPD(IPTRK,'LBLW',LBLW_PTR)
CALL C_F_POINTER(MUW_PTR,MUW,(/ LL4VW/ISEG /))
CALL C_F_POINTER(IPVW_PTR,IPVW,(/ LL4W /))
CALL C_F_POINTER(NBLW_PTR,NBLW,(/ LONW /))
CALL C_F_POINTER(LBLW_PTR,LBLW,(/ LONW /))
ENDIF
CALL C_F_POINTER(C11W_PTR,C11W,(/ C11W_LEN /))
ENDIF
CALL LCMGPD(IPTRK,'IPBBX',IPBX_PTR)
CALL LCMLEN(IPSYS,'XB',LENXB,ITYL)
IF(LENXB.EQ.0) THEN
CALL LCMGPD(IPTRK,'XB',BX_PTR)
ELSE
CALL LCMGPD(IPSYS,'XB',BX_PTR)
ENDIF
CALL C_F_POINTER(IPBX_PTR,IPBX,(/ 2*IELEM*LL4X /))
CALL C_F_POINTER(BX_PTR,BX,(/ 2*IELEM*LL4X /))
NULLIFY(IPVX)
IF(DIAG) THEN
CALL LCMLEN(IPSYS,'YI'//NAMT,C11X_LEN,ITYLCM)
CALL LCMGPD(IPSYS,'YI'//NAMT,C11X_PTR)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
CALL LCMGPD(IPTRK,'MUY',MUX_PTR)
CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4X /))
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
CALL LCMGET(IPTRK,'LL4VY',LL4VX)
CALL LCMGPD(IPTRK,'MUVY',MUX_PTR)
CALL LCMGPD(IPTRK,'IPVY',IPVX_PTR)
CALL LCMLEN(IPTRK,'NBLY',LONX,ITYLCM)
CALL LCMGPD(IPTRK,'NBLY',NBLX_PTR)
CALL LCMGPD(IPTRK,'LBLY',LBLX_PTR)
CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4VX/ISEG /))
CALL C_F_POINTER(IPVX_PTR,IPVX,(/ LL4X /))
CALL C_F_POINTER(NBLX_PTR,NBLX,(/ LONX /))
CALL C_F_POINTER(LBLX_PTR,LBLX,(/ LONX /))
ENDIF
ELSE
CALL LCMLEN(IPSYS,'XI'//NAMT,C11X_LEN,ITYLCM)
CALL LCMGPD(IPSYS,'XI'//NAMT,C11X_PTR)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
CALL LCMGPD(IPTRK,'MUX',MUX_PTR)
CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4X /))
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
CALL LCMGET(IPTRK,'LL4VX',LL4VX)
CALL LCMGPD(IPTRK,'MUVX',MUX_PTR)
CALL LCMGPD(IPTRK,'IPVX',IPVX_PTR)
CALL LCMLEN(IPTRK,'NBLX',LONX,ITYLCM)
CALL LCMGPD(IPTRK,'NBLX',NBLX_PTR)
CALL LCMGPD(IPTRK,'LBLX',LBLX_PTR)
CALL C_F_POINTER(MUX_PTR,MUX,(/ LL4VX/ISEG /))
CALL C_F_POINTER(IPVX_PTR,IPVX,(/ LL4X /))
CALL C_F_POINTER(NBLX_PTR,NBLX,(/ LONX /))
CALL C_F_POINTER(LBLX_PTR,LBLX,(/ LONX /))
ENDIF
ENDIF
CALL C_F_POINTER(C11X_PTR,C11X,(/ C11X_LEN /))
NULLIFY(IPBY)
NULLIFY(IPVY)
NULLIFY(BY)
NULLIFY(C11Y)
IF(LL4Y.GT.0) THEN
CALL LCMGPD(IPTRK,'IPBBY',IPBY_PTR)
CALL LCMLEN(IPSYS,'YB',LENYB,ITYL)
IF(LENYB.EQ.0) THEN
CALL LCMGPD(IPTRK,'YB',BY_PTR)
ELSE
CALL LCMGPD(IPSYS,'YB',BY_PTR)
ENDIF
CALL C_F_POINTER(IPBY_PTR,IPBY,(/ 2*IELEM*LL4Y /))
CALL C_F_POINTER(BY_PTR,BY,(/ 2*IELEM*LL4Y /))
CALL LCMLEN(IPSYS,'YI'//NAMT,C11Y_LEN,ITYLCM)
CALL LCMGPD(IPSYS,'YI'//NAMT,C11Y_PTR)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
CALL LCMGPD(IPTRK,'MUY',MUY_PTR)
CALL C_F_POINTER(MUY_PTR,MUY,(/ LL4Y /))
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
CALL LCMGET(IPTRK,'LL4VY',LL4VY)
CALL LCMGPD(IPTRK,'MUVY',MUY_PTR)
CALL LCMGPD(IPTRK,'IPVY',IPVY_PTR)
CALL LCMLEN(IPTRK,'NBLY',LONY,ITYLCM)
CALL LCMGPD(IPTRK,'NBLY',NBLY_PTR)
CALL LCMGPD(IPTRK,'LBLY',LBLY_PTR)
CALL C_F_POINTER(MUY_PTR,MUY,(/ LL4VY/ISEG /))
CALL C_F_POINTER(IPVY_PTR,IPVY,(/ LL4Y /))
CALL C_F_POINTER(NBLY_PTR,NBLY,(/ LONY /))
CALL C_F_POINTER(LBLY_PTR,LBLY,(/ LONY /))
ENDIF
CALL C_F_POINTER(C11Y_PTR,C11Y,(/ C11Y_LEN /))
ENDIF
NULLIFY(IPBZ)
NULLIFY(IPVZ)
NULLIFY(BZ)
NULLIFY(C11Z)
IF(LL4Z.GT.0) THEN
CALL LCMGPD(IPTRK,'IPBBZ',IPBZ_PTR)
CALL LCMLEN(IPSYS,'ZB',LENZB,ITYL)
IF(LENZB.EQ.0) THEN
CALL LCMGPD(IPTRK,'ZB',BZ_PTR)
ELSE
CALL LCMGPD(IPSYS,'ZB',BZ_PTR)
ENDIF
CALL C_F_POINTER(IPBZ_PTR,IPBZ,(/ 2*IELEM*LL4Z /))
CALL C_F_POINTER(BZ_PTR,BZ,(/ 2*IELEM*LL4Z /))
CALL LCMLEN(IPSYS,'ZI'//NAMT,C11Z_LEN,ITYLCM)
CALL LCMGPD(IPSYS,'ZI'//NAMT,C11Z_PTR)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
CALL LCMGPD(IPTRK,'MUZ',MUZ_PTR)
CALL C_F_POINTER(MUZ_PTR,MUZ,(/ LL4Z /))
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
CALL LCMGET(IPTRK,'LL4VZ',LL4VZ)
CALL LCMGPD(IPTRK,'MUVZ',MUZ_PTR)
CALL LCMGPD(IPTRK,'IPVZ',IPVZ_PTR)
CALL LCMLEN(IPTRK,'NBLZ',LONZ,ITYLCM)
CALL LCMGPD(IPTRK,'NBLZ',NBLZ_PTR)
CALL LCMGPD(IPTRK,'LBLZ',LBLZ_PTR)
CALL C_F_POINTER(MUZ_PTR,MUZ,(/ LL4VZ/ISEG /))
CALL C_F_POINTER(IPVZ_PTR,IPVZ,(/ LL4Z /))
CALL C_F_POINTER(NBLZ_PTR,NBLZ,(/ LONZ /))
CALL C_F_POINTER(LBLZ_PTR,LBLZ,(/ LONZ /))
ENDIF
CALL C_F_POINTER(C11Z_PTR,C11Z,(/ C11Z_LEN /))
ENDIF
IF(CHEX) THEN
NBLOS=LX*LZ/3
ALLOCATE(DIFF(NBLOS))
ENDIF
*----
* PERFORM ADI ITERATIONS AND LEGENDRE ORDER SWAPPING
*----
ALLOCATE(FL(LL4F),FX(LL4X))
IF(LL4W.GT.0) ALLOCATE(FW(LL4W))
IF(LL4Y.GT.0) ALLOCATE(FY(LL4Y))
IF(LL4Z.GT.0) ALLOCATE(FZ(LL4Z))
IF(ISEG.GT.0) ALLOCATE(T(ISEG))
DO 615 IADI=1,NADI
DO 610 IL=0,NLF-1
JOFF=(IL/2)*L4
IF(MOD(IL,2).EQ.0) THEN
DO 21 I0=1,LL4X
FX(I0)=F1(JOFF+IOFX+I0)
21 CONTINUE
DO 22 I0=1,LL4Y
FY(I0)=F1(JOFF+IOFY+I0)
22 CONTINUE
DO 23 I0=1,LL4Z
FZ(I0)=F1(JOFF+IOFZ+I0)
23 CONTINUE
ENDIF
IF(CHEX) THEN
NBLOS=LX*LZ/3
CALL PNFH3E(IL,NBMIX,NBLOS,IELEM,ICOL,NLF,NVD,NAN,L4,LL4F,
1 MAT,SIGTI,SIDE,ZZ,FRZ,QFR,IPERT,KN,LC,R,V,S1,F1)
ELSE
CALL PNFL3E(IL,NREG,IELEM,ICOL,XX,YY,ZZ,MAT,VOL,NBMIX,NLF,
1 NVD,NAN,SIGTI,L4,KN,QFR,LC,R,V,S1,F1)
ENDIF
IF(MOD(IL,2).EQ.1) THEN
*----
* RECOVER CROSS SECTIONS FOR THE PIOLAT TERMS.
*----
IF(CHEX) THEN
NBLOS=LX*LZ/3
FACT=REAL(2*IL+1)
DO 25 KEL=1,NBLOS
DIFF(KEL)=0.0
IF(IPERT(KEL).GT.0) THEN
IBM=MAT((IPERT(KEL)-1)*3+1)
IF(IBM.GT.0) THEN
GARS=SIGT(IBM,MIN(IL+1,NAN))
IOF=(IPERT(KEL)-1)*3+1
DIFF(KEL)=FACT*ZZ(IOF)*FRZ(KEL)*GARS
ENDIF
ENDIF
25 CONTINUE
ENDIF
*----
* W DIRECTION
*----
IF(LL4W.GT.0) THEN
NBLOS=LX*LZ/3
DO 30 I0=1,LL4F
FL(I0)=F1(JOFF+I0)
30 CONTINUE
DO 50 I0=1,LL4X
DO 40 J0=1,2*IELEM
JJ=IPBX((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 50
FL(JJ)=FL(JJ)-BX((I0-1)*2*IELEM+J0)*REAL(IL)*FX(I0)
40 CONTINUE
50 CONTINUE
DO 70 I0=1,LL4Y
DO 60 J0=1,2*IELEM
JJ=IPBY((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 70
FL(JJ)=FL(JJ)-BY((I0-1)*2*IELEM+J0)*REAL(IL)*FY(I0)
60 CONTINUE
70 CONTINUE
DO 90 I0=1,LL4Z
DO 80 J0=1,2*IELEM
JJ=IPBZ((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 90
FL(JJ)=FL(JJ)-BZ((I0-1)*2*IELEM+J0)*REAL(IL)*FZ(I0)
80 CONTINUE
90 CONTINUE
DO 115 I0=1,LL4W
GGW=-F1(JOFF+IOFW+I0)
DO 100 J0=1,2*IELEM
JJ=IPBW((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 110
GGW=GGW+BW((I0-1)*2*IELEM+J0)*REAL(IL)*
1 FL(JJ)/TF((IL/2)*LL4F+JJ)
100 CONTINUE
110 FW(I0)=GGW
115 CONTINUE
*
* PIOLAT TRANSFORM TERM.
CALL FLDPWY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
1 FY,FW)
CALL FLDPWX(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,FX,FW)
MUMAX=MUW(LL4W)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
CALL ALLDLS(LL4W,MUW,C11W(1+(IL/2)*MUMAX),FW)
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A W-ORIENTED LINEAR SYSTEM.
ALLOCATE(GAR(LL4VW))
GAR(:LL4VW)=0.0
DO 120 I=1,LL4W
GAR(IPVW(I))=FW(I)
120 CONTINUE
CALL ALVDLS(LTSW,MUW,C11W(1+(IL/2)*MUMAX),GAR,ISEG,LONW,
1 NBLW,LBLW,T)
DO 130 I=1,LL4W
FW(I)=GAR(IPVW(I))
130 CONTINUE
DEALLOCATE(GAR)
ENDIF
ENDIF
*----
* X DIRECTION
*----
DO 140 I0=1,LL4F
FL(I0)=F1(JOFF+I0)
140 CONTINUE
DO 160 I0=1,LL4W
DO 150 J0=1,2*IELEM
JJ=IPBW((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 160
FL(JJ)=FL(JJ)-BW((I0-1)*2*IELEM+J0)*REAL(IL)*FW(I0)
150 CONTINUE
160 CONTINUE
DO 180 I0=1,LL4Y
DO 170 J0=1,2*IELEM
JJ=IPBY((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 180
FL(JJ)=FL(JJ)-BY((I0-1)*2*IELEM+J0)*REAL(IL)*FY(I0)
170 CONTINUE
180 CONTINUE
DO 200 I0=1,LL4Z
DO 190 J0=1,2*IELEM
JJ=IPBZ((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 200
FL(JJ)=FL(JJ)-BZ((I0-1)*2*IELEM+J0)*REAL(IL)*FZ(I0)
190 CONTINUE
200 CONTINUE
DO 225 I0=1,LL4X
GGX=-F1(JOFF+IOFX+I0)
DO 210 J0=1,2*IELEM
JJ=IPBX((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 220
GGX=GGX+BX((I0-1)*2*IELEM+J0)*REAL(IL)*FL(JJ)/
1 TF((IL/2)*LL4F+JJ)
210 CONTINUE
220 FX(I0)=GGX
225 CONTINUE
IF(LL4W.GT.0) THEN
* PIOLAT TRANSFORM TERM.
NBLOS=LX*LZ/3
CALL FLDPXW(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,FW,
1 FX)
CALL FLDPXY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
1 DIFF,FY,FX)
ENDIF
MUMAX=MUX(LL4X)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
CALL ALLDLS(LL4X,MUX,C11X(1+(IL/2)*MUMAX),FX)
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A X-ORIENTED LINEAR SYSTEM.
ALLOCATE(GAR(LL4VX))
GAR(:LL4VX)=0.0
DO 230 I=1,LL4X
GAR(IPVX(I))=FX(I)
230 CONTINUE
CALL ALVDLS(LTSW,MUX,C11X(1+(IL/2)*MUMAX),GAR,ISEG,LONX,
1 NBLX,LBLX,T)
DO 240 I=1,LL4X
FX(I)=GAR(IPVX(I))
240 CONTINUE
DEALLOCATE(GAR)
ENDIF
*----
* Y DIRECTION
*----
IF(LL4Y.GT.0) THEN
DO 250 I0=1,LL4F
FL(I0)=F1(JOFF+I0)
250 CONTINUE
DO 270 I0=1,LL4W
DO 260 J0=1,2*IELEM
JJ=IPBW((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 270
FL(JJ)=FL(JJ)-BW((I0-1)*2*IELEM+J0)*REAL(IL)*FW(I0)
260 CONTINUE
270 CONTINUE
DO 290 I0=1,LL4X
DO 280 J0=1,2*IELEM
JJ=IPBX((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 290
FL(JJ)=FL(JJ)-BX((I0-1)*2*IELEM+J0)*REAL(IL)*FX(I0)
280 CONTINUE
290 CONTINUE
DO 310 I0=1,LL4Z
DO 300 J0=1,2*IELEM
JJ=IPBZ((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 310
FL(JJ)=FL(JJ)-BZ((I0-1)*2*IELEM+J0)*REAL(IL)*FZ(I0)
300 CONTINUE
310 CONTINUE
DO 335 I0=1,LL4Y
GGY=-F1(JOFF+IOFY+I0)
DO 320 J0=1,2*IELEM
JJ=IPBY((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 330
GGY=GGY+BY((I0-1)*2*IELEM+J0)*REAL(IL)*
1 FL(JJ)/TF((IL/2)*LL4F+JJ)
320 CONTINUE
330 FY(I0)=GGY
335 CONTINUE
IF(LL4W.GT.0) THEN
* PIOLAT TRANSFORM TERM.
NBLOS=LX*LZ/3
CALL FLDPYX(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
1 DIFF,FX,FY)
CALL FLDPYW(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
1 DIFF,FW,FY)
ENDIF
MUMAX=MUY(LL4Y)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
CALL ALLDLS(LL4Y,MUY,C11Y(1+(IL/2)*MUMAX),FY)
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A Y-ORIENTED LINEAR SYSTEM.
ALLOCATE(GAR(LL4VY))
GAR(:LL4VY)=0.0
DO 340 I=1,LL4Y
GAR(IPVY(I))=FY(I)
340 CONTINUE
CALL ALVDLS(LTSW,MUY,C11Y(1+(IL/2)*MUMAX),GAR,ISEG,LONY,
1 NBLY,LBLY,T)
DO 350 I=1,LL4Y
FY(I)=GAR(IPVY(I))
350 CONTINUE
DEALLOCATE(GAR)
ENDIF
ENDIF
*----
* Z DIRECTION
*----
IF(LL4Z.GT.0) THEN
DO 360 I0=1,LL4F
FL(I0)=F1(JOFF+I0)
360 CONTINUE
DO 380 I0=1,LL4W
DO 370 J0=1,2*IELEM
JJ=IPBW((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 380
FL(JJ)=FL(JJ)-BW((I0-1)*2*IELEM+J0)*REAL(IL)*FW(I0)
370 CONTINUE
380 CONTINUE
DO 400 I0=1,LL4X
DO 390 J0=1,2*IELEM
JJ=IPBX((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 400
FL(JJ)=FL(JJ)-BX((I0-1)*2*IELEM+J0)*REAL(IL)*FX(I0)
390 CONTINUE
400 CONTINUE
DO 420 I0=1,LL4Y
DO 410 J0=1,2*IELEM
JJ=IPBY((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 420
FL(JJ)=FL(JJ)-BY((I0-1)*2*IELEM+J0)*REAL(IL)*FY(I0)
410 CONTINUE
420 CONTINUE
DO 445 I0=1,LL4Z
GGZ=-F1(JOFF+IOFZ+I0)
DO 430 J0=1,2*IELEM
JJ=IPBZ((I0-1)*2*IELEM+J0)
IF(JJ.EQ.0) GO TO 440
GGZ=GGZ+BZ((I0-1)*2*IELEM+J0)*REAL(IL)*
1 FL(JJ)/TF((IL/2)*LL4F+JJ)
430 CONTINUE
440 FZ(I0)=GGZ
445 CONTINUE
MUMAX=MUZ(LL4Z)
IF(ISEG.EQ.0) THEN
* SCALAR SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
CALL ALLDLS(LL4Z,MUZ,C11Z(1+(IL/2)*MUMAX),FZ)
ELSE IF(ISEG.GT.0) THEN
* SUPERVECTORIAL SOLUTION FOR A Z-ORIENTED LINEAR SYSTEM.
ALLOCATE(GAR(LL4VZ))
GAR(:LL4VZ)=0.0
DO 450 I=1,LL4Z
GAR(IPVZ(I))=FZ(I)
450 CONTINUE
CALL ALVDLS(LTSW,MUZ,C11Z(1+(IL/2)*MUMAX),GAR,ISEG,LONZ,
1 NBLZ,LBLZ,T)
DO 460 I=1,LL4Z
FZ(I)=GAR(IPVZ(I))
460 CONTINUE
DEALLOCATE(GAR)
ENDIF
ENDIF
*----
* COMPUTE FLUX AND RECOVER CURRENTS
*----
DO 470 I0=1,LL4F
FL(I0)=F1(JOFF+I0)
470 CONTINUE
DO 490 J0=1,LL4W
DO 480 I0=1,2*IELEM
II=IPBW((J0-1)*2*IELEM+I0)
IF(II.EQ.0) GO TO 490
FL(II)=FL(II)-BW((J0-1)*2*IELEM+I0)*REAL(IL)*FW(J0)
480 CONTINUE
490 CONTINUE
DO 510 J0=1,LL4X
DO 500 I0=1,2*IELEM
II=IPBX((J0-1)*2*IELEM+I0)
IF(II.EQ.0) GO TO 510
FL(II)=FL(II)-BX((J0-1)*2*IELEM+I0)*REAL(IL)*FX(J0)
500 CONTINUE
510 CONTINUE
DO 530 J0=1,LL4Y
DO 520 I0=1,2*IELEM
II=IPBY((J0-1)*2*IELEM+I0)
IF(II.EQ.0) GO TO 530
FL(II)=FL(II)-BY((J0-1)*2*IELEM+I0)*REAL(IL)*FY(J0)
520 CONTINUE
530 CONTINUE
DO 550 J0=1,LL4Z
DO 540 I0=1,2*IELEM
II=IPBZ((J0-1)*2*IELEM+I0)
IF(II.EQ.0) GO TO 550
FL(II)=FL(II)-BZ((J0-1)*2*IELEM+I0)*REAL(IL)*FZ(J0)
540 CONTINUE
550 CONTINUE
DO 560 I0=1,LL4F
F1(JOFF+I0)=FL(I0)/TF((IL/2)*LL4F+I0)
560 CONTINUE
IF(LL4W.GT.0) THEN
DO 570 I0=1,LL4W
F1(JOFF+IOFW+I0)=FW(I0)
570 CONTINUE
ENDIF
DO 580 I0=1,LL4X
F1(JOFF+IOFX+I0)=FX(I0)
580 CONTINUE
IF(LL4Y.GT.0) THEN
DO 590 I0=1,LL4Y
F1(JOFF+IOFY+I0)=FY(I0)
590 CONTINUE
ENDIF
IF(LL4Z.GT.0) THEN
DO 600 I0=1,LL4Z
F1(JOFF+IOFZ+I0)=FZ(I0)
600 CONTINUE
ENDIF
ENDIF
610 CONTINUE
615 CONTINUE
IF(ISEG.GT.0) DEALLOCATE(T)
DEALLOCATE(FL,FX)
IF(LL4W.GT.0) DEALLOCATE(FW)
IF(LL4Y.GT.0) DEALLOCATE(FY)
IF(LL4Z.GT.0) DEALLOCATE(FZ)
IF(.NOT.CHEX) DEALLOCATE(YY,XX)
DEALLOCATE(V,R,ZZ,IQFR,QFR,KN,VOL,MAT)
IF(CHEX) DEALLOCATE(DIFF)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(SIGT,SIGTI)
RETURN
END
|