1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
|
*DECK FLDSMB
SUBROUTINE FLDSMB (IPTRK,IPSYS,IPFLUX,LL4,ITY,NUN,NGRP,ICL1,ICL2,
1 IMPX,IMPH,TITR,EPS2,MAXOUT,MAXINR,EPSINR,EVECT,FKEFF)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of a multigroup eigenvalue system for the calculation of the
* direct neutron flux in BIVAC. Use the preconditionned power method
* with a two-parameter SVAT acceleration technique.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK L_TRACK pointer to the BIVAC tracking information.
* IPSYS L_SYSTEM pointer to system matrices.
* IPFLUX L_FLUX pointer to the solution.
* LL4 order of the system matrices.
* ITY type of algorithm: 1: Diffusion theory; 11: Simplified PN
* approximation.
* NUN number of unknowns in each energy group.
* NGRP number of energy groups.
* ICL1 number of free iterations in one cycle of the inverse power
* method.
* ICL2 number of accelerated iterations in one cycle.
* IMPX print parameter: =0: no print; =1: minimum printing;
* =2: iteration history is printed.
* IMPH type of histogram processing:
* =0: no action is taken;
* =1: the flux is compared to a reference flux stored on LCM;
* =2: the convergence histogram is printed;
* =3: the convergence histogram is printed with axis and
* titles. The plotting file is completed;
* =4: the convergence histogram is printed with axis, acce-
* leration factors and titles. The plotting file is
* completed.
* TITR title.
* EPS2 convergence criteria for the flux.
* MAXOUT maximum number of outer iterations.
* MAXINR maximum number of thermal iterations.
* EPSINR thermal iteration epsilon.
* EVECT initial estimate of the unknown vector.
*
*Parameters: output
* EVECT converged unknown vector.
* FKEFF effective multiplication factor.
*
*Reference:
* A. H\'ebert, 'Preconditioning the power method for reactor
* calculations', Nucl. Sci. Eng., 94, 1 (1986).
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
CHARACTER*72 TITR
INTEGER LL4,ITY,NUN,NGRP,ICL1,ICL2,IMPX,IMPH,MAXOUT,MAXINR
REAL FKEFF,EPS2,EPSINR,EVECT(NUN,NGRP)
*----
* LOCAL VARIABLES
*----
PARAMETER (MMAXX=250,EPS1=1.0E-5)
CHARACTER*12 TEXT12
LOGICAL LOGTES
DOUBLE PRECISION AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,BEBE,BEBG,BEBH,
1 BGBG,BGBH,BHBH,AEBE,AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH,
2 X,DXDA,DXDB,Y,DYDA,DYDB,Z,DZDA,DZDB,F,D2F(2,3),EVAL,ALP,BET,
3 FMIN
INTEGER ITITR(18)
REAL ERR(MMAXX),ALPH(MMAXX),BETA(MMAXX)
DOUBLE PRECISION, PARAMETER :: ALP_TAB(24) = (/ 0.2, 0.4, 0.6,
1 0.8, 1.0, 1.2, 1.5, 2.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
2 40.0, 45.0, 50.0, 55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0 /)
DOUBLE PRECISION, PARAMETER :: BET_TAB(11) = (/ -1.0, -0.8, -0.6,
1 -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 /)
REAL, DIMENSION(:), ALLOCATABLE :: WORK
REAL, DIMENSION(:,:), ALLOCATABLE :: GRAD1,GRAD2,GAR1,GAR2,GAR3,
1 GAF1,GAF2,GAF3
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(GRAD1(NUN,NGRP),GRAD2(NUN,NGRP),GAR1(NUN,NGRP),
1 GAR2(NUN,NGRP),GAR3(NUN,NGRP),GAF1(NUN,NGRP),GAF2(NUN,NGRP),
2 GAF3(NUN,NGRP),WORK(NUN))
*
* TKT : CPU TIME FOR THE SOLUTION OF LINEAR SYSTEMS.
* TKB : CPU TIME FOR BILINEAR PRODUCT EVALUATIONS.
TKT=0.0
TKB=0.0
CALL KDRCPU(TK1)
*----
* PRECONDITIONED POWER METHOD
*----
EVAL=1.0
VVV=0.0
ISTART=1
TEST=0.0
IF(IMPX.GE.1) WRITE (6,600)
IF(IMPX.GE.2) WRITE (6,610)
DO 25 IGR=1,NGRP
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EVECT(1,IGR),GAR1(1,IGR))
DO 20 JGR=1,NGRP
IF(JGR.EQ.IGR) GO TO 20
WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 20
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EVECT(1,JGR),WORK(1))
DO 10 I=1,LL4
GAR1(I,IGR)=GAR1(I,IGR)-WORK(I)
10 CONTINUE
20 CONTINUE
25 CONTINUE
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
*
M=0
30 M=M+1
*----
* EIGENVALUE EVALUATION
*----
CALL KDRCPU(TK1)
AEBE=0.0D0
BEBE=0.0D0
DO 75 IGR=1,NGRP
DO 40 I=1,LL4
GAF1(I,IGR)=0.0
40 CONTINUE
DO 60 JGR=1,NGRP
WRITE(TEXT12,'(1HB,2I3.3)') IGR,JGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 60
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,EVECT(1,JGR),WORK(1))
DO 50 I=1,LL4
GAF1(I,IGR)=GAF1(I,IGR)+WORK(I)
50 CONTINUE
60 CONTINUE
DO 70 I=1,LL4
AEBE=AEBE+GAR1(I,IGR)*GAF1(I,IGR)
BEBE=BEBE+GAF1(I,IGR)**2
70 CONTINUE
75 CONTINUE
EVAL=AEBE/BEBE
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
*----
* DIRECTION EVALUATION
*----
DO 110 IGR=1,NGRP
CALL KDRCPU(TK1)
DO 80 I=1,LL4
GRAD1(I,IGR)=REAL(EVAL)*GAF1(I,IGR)-GAR1(I,IGR)
80 CONTINUE
DO 100 JGR=1,IGR-1
WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 100
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,JGR),WORK(1))
DO 90 I=1,LL4
GRAD1(I,IGR)=GRAD1(I,IGR)+WORK(I)
90 CONTINUE
100 CONTINUE
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
*
CALL KDRCPU(TK1)
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL MTLDLS(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,IGR))
CALL KDRCPU(TK2)
TKT=TKT+(TK2-TK1)
110 CONTINUE
*----
* PERFORM THERMAL (UP-SCATTERING) ITERATIONS
*----
KTER=0
NADI=5 ! used with SPN approximations
IF(MAXINR.GT.1) THEN
CALL FLDBHR(IPTRK,IPSYS,.FALSE.,LL4,ITY,NUN,NGRP,ICL1,ICL2,
1 IMPX,NADI,MAXINR,EPSINR,KTER,TKT,TKB,GRAD1)
ENDIF
*----
* DISPLACEMENT EVALUATION
*----
F=0.0D0
DELS=ABS(REAL((EVAL-VVV)/EVAL))
VVV=REAL(EVAL)
CALL KDRCPU(TK1)
*----
* EVALUATION OF THE TWO ACCELERATION PARAMETERS ALP AND BET
*----
ALP=1.0D0
BET=0.0D0
N=0
AEAE=0.0D0
AEAG=0.0D0
AEAH=0.0D0
AGAG=0.0D0
AGAH=0.0D0
AHAH=0.0D0
BEBG=0.0D0
BEBH=0.0D0
BGBG=0.0D0
BGBH=0.0D0
BHBH=0.0D0
AEBG=0.0D0
AEBH=0.0D0
AGBE=0.0D0
AGBG=0.0D0
AGBH=0.0D0
AHBE=0.0D0
AHBG=0.0D0
AHBH=0.0D0
DO 165 IGR=1,NGRP
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,IGR),GAR2(1,IGR))
DO 120 I=1,LL4
GAF2(I,IGR)=0.0
120 CONTINUE
DO 160 JGR=1,NGRP
IF(JGR.EQ.IGR) GO TO 140
WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 140
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,JGR),WORK(1))
DO 130 I=1,LL4
GAR2(I,IGR)=GAR2(I,IGR)-WORK(I)
130 CONTINUE
140 WRITE(TEXT12,'(1HB,2I3.3)') IGR,JGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 160
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,JGR),WORK(1))
DO 150 I=1,LL4
GAF2(I,IGR)=GAF2(I,IGR)+WORK(I)
150 CONTINUE
160 CONTINUE
165 CONTINUE
IF(1+MOD(M-ISTART,ICL1+ICL2).GT.ICL1) THEN
DO 175 IGR=1,NGRP
DO 170 I=1,LL4
* COMPUTE (A ,A )
AEAE=AEAE+GAR1(I,IGR)**2
AEAG=AEAG+GAR1(I,IGR)*GAR2(I,IGR)
AEAH=AEAH+GAR1(I,IGR)*GAR3(I,IGR)
AGAG=AGAG+GAR2(I,IGR)**2
AGAH=AGAH+GAR2(I,IGR)*GAR3(I,IGR)
AHAH=AHAH+GAR3(I,IGR)**2
* COMPUTE (B ,B )
BEBG=BEBG+GAF1(I,IGR)*GAF2(I,IGR)
BEBH=BEBH+GAF1(I,IGR)*GAF3(I,IGR)
BGBG=BGBG+GAF2(I,IGR)**2
BGBH=BGBH+GAF2(I,IGR)*GAF3(I,IGR)
BHBH=BHBH+GAF3(I,IGR)**2
* COMPUTE (A ,B )
AEBG=AEBG+GAR1(I,IGR)*GAF2(I,IGR)
AEBH=AEBH+GAR1(I,IGR)*GAF3(I,IGR)
AGBE=AGBE+GAR2(I,IGR)*GAF1(I,IGR)
AGBG=AGBG+GAR2(I,IGR)*GAF2(I,IGR)
AGBH=AGBH+GAR2(I,IGR)*GAF3(I,IGR)
AHBE=AHBE+GAR3(I,IGR)*GAF1(I,IGR)
AHBG=AHBG+GAR3(I,IGR)*GAF2(I,IGR)
AHBH=AHBH+GAR3(I,IGR)*GAF3(I,IGR)
170 CONTINUE
175 CONTINUE
*
180 N=N+1
IF(N.GT.10) GO TO 185
* COMPUTE X(M+1)
X=BEBE+ALP*ALP*BGBG+BET*BET*BHBH+2.0D0*(ALP*BEBG+BET*BEBH
1 +ALP*BET*BGBH)
DXDA=2.0D0*(BEBG+ALP*BGBG+BET*BGBH)
DXDB=2.0D0*(BEBH+ALP*BGBH+BET*BHBH)
* COMPUTE Y(M+1)
Y=AEAE+ALP*ALP*AGAG+BET*BET*AHAH+2.0D0*(ALP*AEAG+BET*AEAH
1 +ALP*BET*AGAH)
DYDA=2.0D0*(AEAG+ALP*AGAG+BET*AGAH)
DYDB=2.0D0*(AEAH+ALP*AGAH+BET*AHAH)
* COMPUTE Z(M+1)
Z=AEBE+ALP*ALP*AGBG+BET*BET*AHBH+ALP*(AEBG+AGBE)
1 +BET*(AEBH+AHBE)+ALP*BET*(AGBH+AHBG)
DZDA=AEBG+AGBE+2.0D0*ALP*AGBG+BET*(AGBH+AHBG)
DZDB=AEBH+AHBE+ALP*(AGBH+AHBG)+2.0D0*BET*AHBH
* COMPUTE F(M+1)
F=X*Y-Z*Z
D2F(1,1)=2.0D0*(BGBG*Y+DXDA*DYDA+X*AGAG-DZDA**2-2.0D0*Z*AGBG)
D2F(1,2)=2.0D0*BGBH*Y+DXDA*DYDB+DXDB*DYDA+2.0D0*X*AGAH
1 -2.0D0*DZDA*DZDB-2.0D0*Z*(AGBH+AHBG)
D2F(2,2)=2.0D0*(BHBH*Y+DXDB*DYDB+X*AHAH-DZDB**2-2.0D0*Z*AHBH)
D2F(2,1)=D2F(1,2)
D2F(1,3)=DXDA*Y+X*DYDA-2.0D0*Z*DZDA
D2F(2,3)=DXDB*Y+X*DYDB-2.0D0*Z*DZDB
* SOLUTION OF A LINEAR SYSTEM.
CALL ALSBD(2,1,D2F,IER,2)
IF(IER.NE.0) GO TO 185
ALP=ALP-D2F(1,3)
BET=BET-D2F(2,3)
IF(ALP.GT.100.0) GO TO 185
IF((ABS(D2F(1,3)).LE.1.0D-4).AND.(ABS(D2F(2,3)).LE.1.0D-4))
1 GO TO 190
GO TO 180
*
* alternative algorithm in case of Newton-Raphton failure
185 IF(IMPX.GT.0) WRITE(6,'(/30H FLDSMB: FAILURE OF THE NEWTON,
1 55H-RAPHTON ALGORIHTHM FOR COMPUTING THE OVERRELAXATION PA,
2 9HRAMETERS.)')
IAMIN=999
IBMIN=999
FMIN=HUGE(FMIN)
DO IA=1,SIZE(ALP_TAB)
ALP=ALP_TAB(IA)
DO IB=1,SIZE(BET_TAB)
BET=BET_TAB(IB)
* COMPUTE X
X=BEBE+ALP*ALP*BGBG+BET*BET*BHBH+2.0D0*(ALP*BEBG+BET*BEBH
1 +ALP*BET*BGBH)
* COMPUTE Y
Y=AEAE+ALP*ALP*AGAG+BET*BET*AHAH+2.0D0*(ALP*AEAG+BET*AEAH
1 +ALP*BET*AGAH)
* COMPUTE Z
Z=AEBE+ALP*ALP*AGBG+BET*BET*AHBH+ALP*(AEBG+AGBE)
1 +BET*(AEBH+AHBE)+ALP*BET*(AGBH+AHBG)
* COMPUTE F
F=X*Y-Z*Z
IF(F.LT.FMIN) THEN
IAMIN=IA
IBMIN=IB
FMIN=F
ENDIF
ENDDO
ENDDO
ALP=ALP_TAB(IAMIN)
BET=BET_TAB(IBMIN)
190 BET=BET/ALP
IF((ALP.LT.1.0D0).AND.(ALP.GT.0.0D0)) THEN
ALP=1.0D0
BET=0.0D0
ELSE IF(ALP.LE.0.0D0) THEN
ISTART=M+1
ALP=1.0D0
BET=0.0D0
ENDIF
DO 205 IGR=1,NGRP
DO 200 I=1,LL4
GRAD1(I,IGR)=REAL(ALP)*(GRAD1(I,IGR)+REAL(BET)*GRAD2(I,IGR))
GAR2(I,IGR)=REAL(ALP)*(GAR2(I,IGR)+REAL(BET)*GAR3(I,IGR))
GAF2(I,IGR)=REAL(ALP)*(GAF2(I,IGR)+REAL(BET)*GAF3(I,IGR))
200 CONTINUE
205 CONTINUE
ENDIF
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
*
LOGTES=(M.LT.ICL1).OR.(MOD(M-ISTART,ICL1+ICL2).EQ.ICL1-1)
IF(LOGTES.AND.(DELS.LE.EPS1)) THEN
DELT=0.0
DO 220 IGR=1,NGRP
DELN=0.0
DELD=0.0
DO 210 I=1,LL4
EVECT(I,IGR)=EVECT(I,IGR)+GRAD1(I,IGR)
GAR1(I,IGR)=GAR1(I,IGR)+GAR2(I,IGR)
GAF1(I,IGR)=GAF1(I,IGR)+GAF2(I,IGR)
GRAD2(I,IGR)=GRAD1(I,IGR)
GAR3(I,IGR)=GAR2(I,IGR)
GAF3(I,IGR)=GAF2(I,IGR)
DELN=MAX(DELN,ABS(GAF2(I,IGR)))
DELD=MAX(DELD,ABS(GAF1(I,IGR)))
210 CONTINUE
IF(DELD.NE.0.0) DELT=MAX(DELT,DELN/DELD)
220 CONTINUE
IF(IMPX.GE.2) WRITE (6,615) M,AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,
1 BEBE,ALP,BET,EVAL,F,DELS,DELT,N,BEBG,BEBH,BGBG,BGBH,BHBH,
2 AEBE,AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH
* COMPUTE THE CONVERGENCE HISTOGRAM.
IF((IMPH.GE.1).AND.(M.LE.MMAXX)) THEN
CALL FLDXCO(IPFLUX,LL4,NUN,EVECT(1,NGRP),.TRUE.,ERR(M))
ALPH(M)=REAL(ALP)
BETA(M)=REAL(BET)
ENDIF
IF(DELT.LE.EPS2) GO TO 240
ELSE
DO 235 IGR=1,NGRP
DO 230 I=1,LL4
EVECT(I,IGR)=EVECT(I,IGR)+GRAD1(I,IGR)
GAR1(I,IGR)=GAR1(I,IGR)+GAR2(I,IGR)
GAF1(I,IGR)=GAF1(I,IGR)+GAF2(I,IGR)
GRAD2(I,IGR)=GRAD1(I,IGR)
GAR3(I,IGR)=GAR2(I,IGR)
GAF3(I,IGR)=GAF2(I,IGR)
230 CONTINUE
235 CONTINUE
IF(IMPX.GE.2) WRITE (6,620) M,AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,
1 BEBE,ALP,BET,EVAL,F,DELS,N,BEBG,BEBH,BGBG,BGBH,BHBH,AEBE,
2 AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH
* COMPUTE THE CONVERGENCE HISTOGRAM.
IF((IMPH.GE.1).AND.(M.LE.MMAXX)) THEN
CALL FLDXCO(IPFLUX,LL4,NUN,EVECT(1,NGRP),.TRUE.,ERR(M))
ALPH(M)=REAL(ALP)
BETA(M)=REAL(BET)
ENDIF
ENDIF
IF(M.EQ.1) TEST=DELS
IF((M.GT.5).AND.(DELS.GT.TEST)) CALL XABORT('FLDSMB: CONVERGENCE'
1 //' FAILURE.')
IF(M.GE.MAXOUT) CALL XABORT('FLDSMB: MAXIMUM NUMBER OF ITERATION'
1 //'S REACHED.')
GO TO 30
*----
* SOLUTION EDITION
*----
240 FKEFF=REAL(1.0D0/EVAL)
IF(IMPX.EQ.1) WRITE (6,640) M
IF(IMPX.GE.1) THEN
WRITE (6,650) TKT,TKB,TKT+TKB
WRITE (6,670) FKEFF
ENDIF
IF(IMPX.EQ.3) THEN
DO 250 IGR=1,NGRP
WRITE (6,680) IGR,(EVECT(I,IGR),I=1,LL4)
250 CONTINUE
ENDIF
IF(IMPH.EQ.1) THEN
CALL LCMLEN(IPFLUX,'REF',ILONG,ITYLCM)
IF(ILONG.EQ.0) THEN
WRITE(6,'(40H FLDSMB: STORE A REFERENCE THERMAL FLUX.)')
CALL LCMPUT(IPFLUX,'REF',NUN,2,EVECT(1,NGRP))
ENDIF
ELSE IF(IMPH.GE.2) THEN
IGRAPH=0
260 IGRAPH=IGRAPH+1
WRITE (TEXT12,'(5HHISTO,I3)') IGRAPH
CALL LCMLEN (IPFLUX,TEXT12,ILENG,ITYLCM)
IF(ILENG.EQ.0) THEN
MM=MIN(M,MMAXX)
READ (TITR,'(18A4)') ITITR
CALL LCMSIX (IPFLUX,TEXT12,1)
CALL LCMPUT (IPFLUX,'HTITLE',18,3,ITITR)
CALL LCMPUT (IPFLUX,'ALPHA',MM,2,ALPH)
CALL LCMPUT (IPFLUX,'BETA',MM,2,BETA)
CALL LCMPUT (IPFLUX,'ERROR',MM,2,ERR)
CALL LCMPUT (IPFLUX,'IMPH',1,1,IMPH)
CALL LCMSIX (IPFLUX,' ',2)
ELSE
GO TO 260
ENDIF
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(GRAD1,GRAD2,GAR1,GAR2,GAR3,GAF1,GAF2,GAF3,WORK)
RETURN
*
600 FORMAT(1H1/50H FLDSMB: ITERATIVE PROCEDURE BASED ON PRECONDITION,
1 16HED POWER METHOD./9X,16HDIRECT EQUATION.)
610 FORMAT(//5X,17HBILINEAR PRODUCTS,48X,5HALPHA,3X,4HBETA,3X,
1 12HEIGENVALUE..,12X,8HACCURACY,11(1H.),2X,1HN)
615 FORMAT(1X,I3,1P,7E9.1,0P,2F8.3,E14.6,3E10.2,I4/(4X,1P,7E9.1))
620 FORMAT(1X,I3,1P,7E9.1,0P,2F8.3,E14.6,2E10.2,10X,I4/(4X,1P,7E9.1))
640 FORMAT(/23H FLDSMB: CONVERGENCE IN,I4,12H ITERATIONS.)
650 FORMAT(/53H FLDSMB: CPU TIME USED TO SOLVE THE TRIANGULAR LINEAR,
1 10H SYSTEMS =,F10.3/23X,34HTO COMPUTE THE BILINEAR PRODUCTS =,
2 F10.3,20X,16HTOTAL CPU TIME =,F10.3)
670 FORMAT(//42H FLDSMB: EFFECTIVE MULTIPLICATION FACTOR =,1P,E17.10/)
680 FORMAT(//47H FLDSMB: EIGENVECTOR CORRESPONDING TO THE GROUP,I4
1 //(5X,1P,8E14.5))
END
|