1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
*DECK FLDPWY
SUBROUTINE FLDPWY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
> DIFF,F2Y,F3W)
*
*-----------------------------------------------------------------------
*
*Purpose:
* compute the Piolat contribution to the current-current tranverse
* couplings for the Thomas-Raviart-Schneider method.
*
*Copyright:
* Copyright (C) 2006 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* LL4W number of currents in direction W.
* LL4X number of currents in direction X.
* LL4Y number of currents in direction Y.
* NBLOS number of lozenges in one ADI direction.
* IELEM degree of the Lagrangian finite elements: =1 (linear);
* =2 (parabolic); =3 (cubic).
* CTRAN tranverse coupling Piolat unit matrix.
* IPERT mixture permutation index.
* KN ADI permutation indices for the volumes and currents.
* DIFF inverse diffusion coefficients.
* F2W right-hand-side vector in direction W.
* F2X right-hand-side vector in direction X.
* F2Y right-hand-side vector in direction Y.
*
*Parameters: output
* F3W result of matrix multiplication in direction W.
* F3X result of matrix multiplication in direction X.
* F3Y result of matrix multiplication in direction Y.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER LL4W,LL4X,LL4Y,NBLOS,IELEM,IPERT(NBLOS),
1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
REAL DIFF(NBLOS),F2Y(LL4Y),F3W(LL4W)
DOUBLE PRECISION CTRAN((IELEM+1)*IELEM,(IELEM+1)*IELEM)
*
NELEM=(IELEM+1)*IELEM
NELEH=NELEM*IELEM
NUM=0
DO 30 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 30
NUM=NUM+1
ITRS=KN(NUM,3)
DINV=DIFF(KEL)
DO 25 I1=0,IELEM-1
DO 20 I0=1,NELEM
I=I1*NELEM+I0
KNW1=KN(ITRS,3+I)
IF(KNW1.EQ.0) GO TO 20
INW1=ABS(KNW1)
DO 10 J0=1,NELEM
J=I1*NELEM+J0
KNY2=KN(NUM,3+5*NELEH+J)
IF(KNY2.EQ.0) GO TO 10
INY2=ABS(KNY2)-LL4W-LL4X
SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2))
F3W(INW1)=F3W(INW1)-SG*DINV*REAL(CTRAN(I0,J0))*F2Y(INY2)
10 CONTINUE
20 CONTINUE
25 CONTINUE
30 CONTINUE
RETURN
END
*
SUBROUTINE FLDPWX(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
> F2X,F3W)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER LL4W,LL4X,NBLOS,IELEM,IPERT(NBLOS),
1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
REAL DIFF(NBLOS),F2X(LL4X),F3W(LL4W)
DOUBLE PRECISION CTRAN((IELEM+1)*IELEM,(IELEM+1)*IELEM)
*
NELEM=(IELEM+1)*IELEM
NELEH=NELEM*IELEM
NUM=0
DO 60 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 60
NUM=NUM+1
DINV=DIFF(KEL)
DO 55 I1=0,IELEM-1
DO 50 I0=1,NELEM
I=I1*NELEM+I0
KNX1=KN(NUM,3+2*NELEH+I)
IF(KNX1.EQ.0) GO TO 50
INX1=ABS(KNX1)-LL4W
DO 40 J0=1,NELEM
J=I1*NELEM+J0
KNW2=KN(NUM,3+NELEH+J)
IF(KNW2.EQ.0) GO TO 40
INW2=ABS(KNW2)
SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2))
F3W(INW2)=F3W(INW2)-SG*DINV*REAL(CTRAN(I0,J0))*F2X(INX1)
40 CONTINUE
50 CONTINUE
55 CONTINUE
60 CONTINUE
RETURN
END
*
SUBROUTINE FLDPXW(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
> F2W,F3X)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER LL4W,LL4X,NBLOS,IELEM,IPERT(NBLOS),
1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
REAL DIFF(NBLOS),F2W(LL4W),F3X(LL4X)
DOUBLE PRECISION CTRAN((IELEM+1)*IELEM,(IELEM+1)*IELEM)
*
NELEM=(IELEM+1)*IELEM
NELEH=NELEM*IELEM
NUM=0
DO 90 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 90
NUM=NUM+1
DINV=DIFF(KEL)
DO 85 I1=0,IELEM-1
DO 80 I0=1,NELEM
I=I1*NELEM+I0
KNX1=KN(NUM,3+2*NELEH+I)
IF(KNX1.EQ.0) GO TO 80
INX1=ABS(KNX1)-LL4W
DO 70 J0=1,NELEM
J=I1*NELEM+J0
KNW2=KN(NUM,3+NELEH+J)
IF(KNW2.EQ.0) GO TO 70
INW2=ABS(KNW2)
SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2))
F3X(INX1)=F3X(INX1)-SG*DINV*REAL(CTRAN(I0,J0))*F2W(INW2)
70 CONTINUE
80 CONTINUE
85 CONTINUE
90 CONTINUE
RETURN
END
*
SUBROUTINE FLDPXY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
> F2Y,F3X)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER LL4W,LL4X,LL4Y,NBLOS,IELEM,IPERT(NBLOS),
1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
REAL DIFF(NBLOS),F2Y(LL4Y),F3X(LL4X)
DOUBLE PRECISION CTRAN((IELEM+1)*IELEM,(IELEM+1)*IELEM)
*
NELEM=(IELEM+1)*IELEM
NELEH=NELEM*IELEM
NUM=0
DO 120 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 120
NUM=NUM+1
DINV=DIFF(KEL)
DO 115 I1=0,IELEM-1
DO 110 I0=1,NELEM
I=I1*NELEM+I0
KNY1=KN(NUM,3+4*NELEH+I)
IF(KNY1.EQ.0) GO TO 110
INY1=ABS(KNY1)-LL4W-LL4X
DO 100 J0=1,NELEM
J=I1*NELEM+J0
KNX2=KN(NUM,3+3*NELEH+J)
IF(KNX2.EQ.0) GO TO 100
INX2=ABS(KNX2)-LL4W
SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2))
F3X(INX2)=F3X(INX2)-SG*DINV*REAL(CTRAN(I0,J0))*F2Y(INY1)
100 CONTINUE
110 CONTINUE
115 CONTINUE
120 CONTINUE
RETURN
END
*
SUBROUTINE FLDPYX(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
> F2X,F3Y)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER LL4W,LL4X,LL4Y,NBLOS,IELEM,IPERT(NBLOS),
1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
REAL DIFF(NBLOS),F2X(LL4X),F3Y(LL4Y)
DOUBLE PRECISION CTRAN((IELEM+1)*IELEM,(IELEM+1)*IELEM)
*
NELEM=(IELEM+1)*IELEM
NELEH=NELEM*IELEM
NUM=0
DO 150 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 150
NUM=NUM+1
DINV=DIFF(KEL)
DO 145 I1=0,IELEM-1
DO 140 I0=1,NELEM
I=I1*NELEM+I0
KNY1=KN(NUM,3+4*NELEH+I)
IF(KNY1.EQ.0) GO TO 140
INY1=ABS(KNY1)-LL4W-LL4X
DO 130 J0=1,NELEM
J=I1*NELEM+J0
KNX2=KN(NUM,3+3*NELEH+J)
IF(KNX2.EQ.0) GO TO 130
INX2=ABS(KNX2)-LL4W
SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2))
F3Y(INY1)=F3Y(INY1)-SG*DINV*REAL(CTRAN(I0,J0))*F2X(INX2)
130 CONTINUE
140 CONTINUE
145 CONTINUE
150 CONTINUE
RETURN
END
*
SUBROUTINE FLDPYW(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
> F2W,F3Y)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER LL4W,LL4X,LL4Y,NBLOS,IELEM,IPERT(NBLOS),
1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
REAL DIFF(NBLOS),F2W(LL4W),F3Y(LL4Y)
DOUBLE PRECISION CTRAN((IELEM+1)*IELEM,(IELEM+1)*IELEM)
*
NELEM=(IELEM+1)*IELEM
NELEH=NELEM*IELEM
NUM=0
DO 180 KEL=1,NBLOS
IF(IPERT(KEL).EQ.0) GO TO 180
NUM=NUM+1
ITRS=KN(NUM,3)
DINV=DIFF(KEL)
DO 175 I1=0,IELEM-1
DO 170 I0=1,NELEM
I=I1*NELEM+I0
KNW1=KN(ITRS,3+I)
IF(KNW1.EQ.0) GO TO 170
INW1=ABS(KNW1)
DO 160 J0=1,NELEM
J=I1*NELEM+J0
KNY2=KN(NUM,3+5*NELEH+J)
IF(KNY2.EQ.0) GO TO 160
INY2=ABS(KNY2)-LL4W-LL4X
SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2))
F3Y(INY2)=F3Y(INY2)-SG*DINV*REAL(CTRAN(I0,J0))*F2W(INW1)
160 CONTINUE
170 CONTINUE
175 CONTINUE
180 CONTINUE
RETURN
END
|