summaryrefslogtreecommitdiff
path: root/Trivac/src/FLDPWY.f
blob: ea4f5ec4f9a4354e8f7dd2492b5b95d1b6921ac4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
*DECK FLDPWY
      SUBROUTINE FLDPWY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,
     > DIFF,F2Y,F3W)
*
*-----------------------------------------------------------------------
*
*Purpose:
* compute the Piolat contribution to the current-current tranverse
* couplings for the Thomas-Raviart-Schneider method.
*
*Copyright:
* Copyright (C) 2006 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* LL4W    number of currents in direction W.
* LL4X    number of currents in direction X.
* LL4Y    number of currents in direction Y.
* NBLOS   number of lozenges in one ADI direction.
* IELEM   degree of the Lagrangian finite elements: =1 (linear);
*         =2 (parabolic); =3 (cubic).
* CTRAN   tranverse coupling Piolat unit matrix.
* IPERT   mixture permutation index.
* KN      ADI permutation indices for the volumes and currents.
* DIFF    inverse diffusion coefficients.
* F2W     right-hand-side vector in direction W.
* F2X     right-hand-side vector in direction X.
* F2Y     right-hand-side vector in direction Y.
*
*Parameters: output
* F3W     result of matrix multiplication in direction W.
* F3X     result of matrix multiplication in direction X.
* F3Y     result of matrix multiplication in direction Y.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER LL4W,LL4X,LL4Y,NBLOS,IELEM,IPERT(NBLOS),
     1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
      REAL DIFF(NBLOS),F2Y(LL4Y),F3W(LL4W)
      DOUBLE PRECISION CTRAN((IELEM+1)*IELEM,(IELEM+1)*IELEM)
*
      NELEM=(IELEM+1)*IELEM
      NELEH=NELEM*IELEM
      NUM=0
      DO 30 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 30
      NUM=NUM+1
      ITRS=KN(NUM,3)
      DINV=DIFF(KEL)
      DO 25 I1=0,IELEM-1
      DO 20 I0=1,NELEM
      I=I1*NELEM+I0
      KNW1=KN(ITRS,3+I)
      IF(KNW1.EQ.0) GO TO 20
      INW1=ABS(KNW1)
      DO 10 J0=1,NELEM
      J=I1*NELEM+J0
      KNY2=KN(NUM,3+5*NELEH+J)
      IF(KNY2.EQ.0) GO TO 10
      INY2=ABS(KNY2)-LL4W-LL4X
      SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2))
      F3W(INW1)=F3W(INW1)-SG*DINV*REAL(CTRAN(I0,J0))*F2Y(INY2)
   10 CONTINUE
   20 CONTINUE
   25 CONTINUE
   30 CONTINUE
      RETURN
      END
*
      SUBROUTINE FLDPWX(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
     > F2X,F3W)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER LL4W,LL4X,NBLOS,IELEM,IPERT(NBLOS),
     1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
      REAL DIFF(NBLOS),F2X(LL4X),F3W(LL4W)
      DOUBLE PRECISION CTRAN((IELEM+1)*IELEM,(IELEM+1)*IELEM)
*
      NELEM=(IELEM+1)*IELEM
      NELEH=NELEM*IELEM
      NUM=0
      DO 60 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 60
      NUM=NUM+1
      DINV=DIFF(KEL)
      DO 55 I1=0,IELEM-1
      DO 50 I0=1,NELEM
      I=I1*NELEM+I0
      KNX1=KN(NUM,3+2*NELEH+I)
      IF(KNX1.EQ.0) GO TO 50
      INX1=ABS(KNX1)-LL4W
      DO 40 J0=1,NELEM
      J=I1*NELEM+J0
      KNW2=KN(NUM,3+NELEH+J)
      IF(KNW2.EQ.0) GO TO 40
      INW2=ABS(KNW2)
      SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2))
      F3W(INW2)=F3W(INW2)-SG*DINV*REAL(CTRAN(I0,J0))*F2X(INX1)
   40 CONTINUE
   50 CONTINUE
   55 CONTINUE
   60 CONTINUE
      RETURN
      END
*
      SUBROUTINE FLDPXW(LL4W,LL4X,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
     > F2W,F3X)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER LL4W,LL4X,NBLOS,IELEM,IPERT(NBLOS),
     1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
      REAL DIFF(NBLOS),F2W(LL4W),F3X(LL4X)
      DOUBLE PRECISION CTRAN((IELEM+1)*IELEM,(IELEM+1)*IELEM)
*
      NELEM=(IELEM+1)*IELEM
      NELEH=NELEM*IELEM
      NUM=0
      DO 90 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 90
      NUM=NUM+1
      DINV=DIFF(KEL)
      DO 85 I1=0,IELEM-1
      DO 80 I0=1,NELEM
      I=I1*NELEM+I0
      KNX1=KN(NUM,3+2*NELEH+I)
      IF(KNX1.EQ.0) GO TO 80
      INX1=ABS(KNX1)-LL4W
      DO 70 J0=1,NELEM
      J=I1*NELEM+J0
      KNW2=KN(NUM,3+NELEH+J)
      IF(KNW2.EQ.0) GO TO 70
      INW2=ABS(KNW2)
      SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2))
      F3X(INX1)=F3X(INX1)-SG*DINV*REAL(CTRAN(I0,J0))*F2W(INW2)
   70 CONTINUE
   80 CONTINUE
   85 CONTINUE
   90 CONTINUE
      RETURN
      END
*
      SUBROUTINE FLDPXY(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
     > F2Y,F3X)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER LL4W,LL4X,LL4Y,NBLOS,IELEM,IPERT(NBLOS),
     1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
      REAL DIFF(NBLOS),F2Y(LL4Y),F3X(LL4X)
      DOUBLE PRECISION CTRAN((IELEM+1)*IELEM,(IELEM+1)*IELEM)
*
      NELEM=(IELEM+1)*IELEM
      NELEH=NELEM*IELEM
      NUM=0
      DO 120 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 120
      NUM=NUM+1
      DINV=DIFF(KEL)
      DO 115 I1=0,IELEM-1
      DO 110 I0=1,NELEM
      I=I1*NELEM+I0
      KNY1=KN(NUM,3+4*NELEH+I)
      IF(KNY1.EQ.0) GO TO 110
      INY1=ABS(KNY1)-LL4W-LL4X
      DO 100 J0=1,NELEM
      J=I1*NELEM+J0
      KNX2=KN(NUM,3+3*NELEH+J)
      IF(KNX2.EQ.0) GO TO 100
      INX2=ABS(KNX2)-LL4W
      SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2))
      F3X(INX2)=F3X(INX2)-SG*DINV*REAL(CTRAN(I0,J0))*F2Y(INY1)
  100 CONTINUE
  110 CONTINUE
  115 CONTINUE
  120 CONTINUE
      RETURN
      END
*
      SUBROUTINE FLDPYX(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
     > F2X,F3Y)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER LL4W,LL4X,LL4Y,NBLOS,IELEM,IPERT(NBLOS),
     1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
      REAL DIFF(NBLOS),F2X(LL4X),F3Y(LL4Y)
      DOUBLE PRECISION CTRAN((IELEM+1)*IELEM,(IELEM+1)*IELEM)
*
      NELEM=(IELEM+1)*IELEM
      NELEH=NELEM*IELEM
      NUM=0
      DO 150 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 150
      NUM=NUM+1
      DINV=DIFF(KEL)
      DO 145 I1=0,IELEM-1
      DO 140 I0=1,NELEM
      I=I1*NELEM+I0
      KNY1=KN(NUM,3+4*NELEH+I)
      IF(KNY1.EQ.0) GO TO 140
      INY1=ABS(KNY1)-LL4W-LL4X
      DO 130 J0=1,NELEM
      J=I1*NELEM+J0
      KNX2=KN(NUM,3+3*NELEH+J)
      IF(KNX2.EQ.0) GO TO 130
      INX2=ABS(KNX2)-LL4W
      SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2))
      F3Y(INY1)=F3Y(INY1)-SG*DINV*REAL(CTRAN(I0,J0))*F2X(INX2)
  130 CONTINUE
  140 CONTINUE
  145 CONTINUE
  150 CONTINUE
      RETURN
      END
*
      SUBROUTINE FLDPYW(LL4W,LL4X,LL4Y,NBLOS,IELEM,CTRAN,IPERT,KN,DIFF,
     > F2W,F3Y)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER LL4W,LL4X,LL4Y,NBLOS,IELEM,IPERT(NBLOS),
     1 KN(NBLOS,3+6*(IELEM+2)*IELEM**2)
      REAL DIFF(NBLOS),F2W(LL4W),F3Y(LL4Y)
      DOUBLE PRECISION CTRAN((IELEM+1)*IELEM,(IELEM+1)*IELEM)
*
      NELEM=(IELEM+1)*IELEM
      NELEH=NELEM*IELEM
      NUM=0
      DO 180 KEL=1,NBLOS
      IF(IPERT(KEL).EQ.0) GO TO 180
      NUM=NUM+1
      ITRS=KN(NUM,3)
      DINV=DIFF(KEL)
      DO 175 I1=0,IELEM-1
      DO 170 I0=1,NELEM
      I=I1*NELEM+I0
      KNW1=KN(ITRS,3+I)
      IF(KNW1.EQ.0) GO TO 170
      INW1=ABS(KNW1)
      DO 160 J0=1,NELEM
      J=I1*NELEM+J0
      KNY2=KN(NUM,3+5*NELEH+J)
      IF(KNY2.EQ.0) GO TO 160
      INY2=ABS(KNY2)-LL4W-LL4X
      SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2))
      F3Y(INY2)=F3Y(INY2)-SG*DINV*REAL(CTRAN(I0,J0))*F2W(INW1)
  160 CONTINUE
  170 CONTINUE
  175 CONTINUE
  180 CONTINUE
      RETURN
      END