summaryrefslogtreecommitdiff
path: root/Trivac/src/FLDMON.f
blob: 8504eb95e3f5690b775440a34c679316f5ca6ae8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
*DECK FLDMON
      SUBROUTINE FLDMON (IPTRK,IPSYS,IPFLUX,LL4,ITY,NUN,NGRP,LMOD,ICL1,
     1 ICL2,IMPX,IMPH,TITR,EPS2,NADI,MAXOUT,MAXINR,EPSINR,RAND,FKEFF,
     2 EVECT,ADECT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of multigroup eigenvalue systems for the calculation of the
* LMOD first bi-orthogonal harmonics of the diffusion equation in
* Trivac. Use the preconditionned power method with Hotelling deflation
* and a two-parameter SVAT acceleration technique.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK   L_TRACK pointer to the tracking information.
* IPSYS   L_SYSTEM pointer to system matrices.
* IPFLUX  L_FLUX pointer to the solution.
* LL4     order of the system matrices.
* ITY     type of solution (2: classical Trivac; 3: Thomas-Raviart).
* NUN     number of unknowns in each energy group.
* NGRP    number of energy groups.
* LMOD    number of bi-orthogonal harmonics to compute.
* ICL1    number of free iterations in one cycle of the inverse power
*         method.
* ICL2    number of accelerated iterations in one cycle.
* IMPX    print parameter: =0: no print ; =1: minimum printing;
*         =2: iteration history is printed; =3: solution is printed.
* IMPH    type of histogram processing:
*         =0: no action is taken;
*         =1: the flux is compared to a reference flux stored on LCM
*         =2: the convergence histogram is printed;
*         =3: the convergence histogram is printed with axis and
*            titles. The plotting file is completed;
*         =4: the convergence histogram is printed with axis, acce-
*            leration factors and titles. The plotting file is
*            completed.
* TITR    title.
* EPS2    convergence criteria for the flux.
* NADI    number of inner ADI iterations per outer iteration.
* MAXOUT  maximum number of outer iterations.
* MAXINR  maximum number of thermal iterations.
* EPSINR  thermal iteration epsilon.
* RAND    initialization flag:
*         =.true. use an initial random flux; =.false. use a flat flux.
*
*Parameters: output
* FKEFF   effective multiplication factor of each harmonic.
* EVECT   converged direct harmonic vector.
* ADECT   converged adjoint harmonic vector.
*
*References:
* A. H\'ebert, 'Preconditioning the power method for reactor
* calculations', Nucl. Sci. Eng., 94, 1 (1986).
* J. H. Wilkinson, "The algebraic eigenvalue problem", Clarendon
* Press, Oxford, p. 584, 1965.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
      CHARACTER TITR*72
      INTEGER LL4,ITY,NUN,NGRP,LMOD,ICL1,ICL2,IMPX,IMPH,NADI,MAXOUT,
     1 MAXINR
      REAL EPS2,EPSINR,FKEFF(LMOD),EVECT(NUN,NGRP,LMOD),
     1 ADECT(NUN,NGRP,LMOD)
      LOGICAL RAND
*----
*  LOCAL VARIABLES
*----
      PARAMETER (MMAXX=250,EPS1=1.0E-5)
      PARAMETER (IM=714025,ID=1366,IC=150889,RM=1.4005112E-6)
      CHARACTER*12 TEXT12
      LOGICAL LOGTES
      DOUBLE PRECISION AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,BEBE,BEBG,BEBH,
     1 BGBG,BGBH,BHBH,AEBE,AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH,
     2 X,DXDA,DXDB,Y,DYDA,DYDB,Z,DZDA,DZDB,F,D2F(2,3),EVAL,ALP,BET,Z1,
     3 FMIN
      TYPE(C_PTR) JPFLUX,KPFLUX,MPFLUX,NPFLUX
      REAL ERR(MMAXX),ALPH(MMAXX),BETA(MMAXX)
      DOUBLE PRECISION, PARAMETER :: ALP_TAB(24) = (/ 0.2, 0.4, 0.6,
     1  0.8, 1.0, 1.2, 1.5, 2.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
     2  40.0, 45.0, 50.0, 55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0 /)
      DOUBLE PRECISION, PARAMETER :: BET_TAB(11) = (/ -1.0, -0.8, -0.6,
     1 -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 /)
      REAL, DIMENSION(:), ALLOCATABLE :: AGAR
      REAL, DIMENSION(:,:), ALLOCATABLE :: GRAD1,GRAD2,VEA1,VEA2,VEA3,
     1 VEB1,VEB2,VEB3
      REAL, DIMENSION(:), POINTER :: AGARM
      TYPE(C_PTR) AGARM_PTR
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(AGAR(LL4),GRAD1(NUN,NGRP),GRAD2(NUN,NGRP),VEA1(NUN,NGRP),
     1 VEA2(NUN,NGRP),VEA3(NUN,NGRP),VEB1(NUN,NGRP),VEB2(NUN,NGRP),
     2 VEB3(NUN,NGRP))
*
*     TKT : CPU TIME FOR THE SOLUTION OF LINEAR SYSTEMS.
*     TKB : CPU TIME FOR BILINEAR PRODUCT EVALUATIONS.
      TKT=0.0
      TKB=0.0
      CALL MTOPEN(IMPX,IPTRK,LL4)
      IF(LL4.GT.NUN) CALL XABORT('FLDMON: INVALID NUMBER OF UNKNOWNS.')
*
      DO 390 IMOD=1,LMOD
      CALL KDRCPU(TK1)
      IF(IMPX.GE.1) WRITE (6,'(1H1//13H HARMONIC NB.,I3//)') IMOD
      CALL LCMLEN(IPFLUX,'MODE',ILONG,ITYLCM)
      IF((ILONG.NE.0).AND.(IMPH.EQ.0)) THEN
         JPFLUX=LCMGID(IPFLUX,'MODE')
         KPFLUX=LCMGIL(JPFLUX,IMOD)
         MPFLUX=LCMGID(KPFLUX,'FLUX')
         NPFLUX=LCMGID(KPFLUX,'AFLUX')
         DO 10 IGR=1,NGRP
         CALL LCMGDL(MPFLUX,IGR,EVECT(1,IGR,IMOD))
         CALL LCMGDL(NPFLUX,IGR,ADECT(1,IGR,IMOD))
   10    CONTINUE
      ELSE IF((IMOD.EQ.1).OR.(.NOT.RAND)) THEN
*        UNIFORM UNKNOWN VECTOR.
         DO 25 IGR=1,NGRP
         DO 20 I=1,NUN
         EVECT(I,IGR,IMOD)=1.0
         ADECT(I,IGR,IMOD)=1.0
   20    CONTINUE
   25    CONTINUE
      ELSE
*        RANDOM UNKNOWN VECTOR.
         ISEED=0
         DO 35 IGR=1,NGRP
         DO 30 I=1,NUN
         ISEED=MOD(ISEED*ID+IC,IM)
         RAN=REAL(ISEED)*RM
         EVECT(I,IGR,IMOD)=RAN
         ADECT(I,IGR,IMOD)=RAN
   30    CONTINUE
   35    CONTINUE
      ENDIF
*----
*  PRECONDITIONED POWER METHOD FOR THE DIRECT PROBLEM
*----
      EVAL=1.0D0
      VVV=0.0
      ISTART=1
      NNADI=NADI
      TEST=0.0
      IF(IMPX.GE.1) WRITE (6,600) NADI,'DIRECT'
      IF(IMPX.GE.2) WRITE (6,610)
      CALL FLDDEF(NUN,IPTRK,IPSYS,LL4,ITY,NGRP,IMOD,LMOD,EVECT,ADECT,
     1 EVECT(1,1,IMOD),1,VEA1,VEB1)
      CALL KDRCPU(TK2)
      TKB=TKB+(TK2-TK1)
      M=0
   50 M=M+1
*----
*  EIGENVALUE EVALUATION
*----
      CALL KDRCPU(TK1)
      AEBE=0.0D0
      BEBE=0.0D0
      DO 65 IGR=1,NGRP
      DO 60 I=1,LL4
      AEBE=AEBE+VEA1(I,IGR)*VEB1(I,IGR)
      BEBE=BEBE+VEB1(I,IGR)**2
   60 CONTINUE
   65 CONTINUE
      EVAL=AEBE/BEBE
      CALL KDRCPU(TK2)
      TKB=TKB+(TK2-TK1)
*----
*  DIRECTION EVALUATION
*----
      DO 110 IGR=1,NGRP
      CALL KDRCPU(TK1)
      DO 70 I=1,LL4
      GRAD1(I,IGR)=REAL(EVAL)*VEB1(I,IGR)-VEA1(I,IGR)
   70 CONTINUE
      DO 100 JGR=1,IGR-1
      WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
      CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
      IF(ILONG.EQ.0) GO TO 100
      IF(ITY.EQ.13) THEN
         CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,JGR),AGAR)
         DO 80 I=1,LL4
         GRAD1(I,IGR)=GRAD1(I,IGR)+AGAR(I)
   80    CONTINUE
      ELSE
         CALL LCMGPD(IPSYS,TEXT12,AGARM_PTR)
         CALL C_F_POINTER(AGARM_PTR,AGARM,(/ ILONG /))
         DO 90 I=1,ILONG
         GRAD1(I,IGR)=GRAD1(I,IGR)+AGARM(I)*GRAD1(I,JGR)
   90    CONTINUE
      ENDIF
  100 CONTINUE
      CALL KDRCPU(TK2)
      TKB=TKB+(TK2-TK1)
*
      CALL KDRCPU(TK1)
      WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
      CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,IGR),NNADI)
      CALL KDRCPU(TK2)
      TKT=TKT+(TK2-TK1)
  110 CONTINUE
*----
*  PERFORM THERMAL (UP-SCATTERING) ITERATIONS
*----
      IF(MAXINR.GT.1) THEN
         CALL FLDTHR(IPTRK,IPSYS,IPFLUX,.FALSE.,LL4,ITY,NUN,NGRP,ICL1,
     1   ICL2,IMPX,NNADI,0,MAXINR,EPSINR,ITER,TKT,TKB,GRAD1)
      ENDIF
*----
*  DISPLACEMENT EVALUATION
*----
      CALL KDRCPU(TK1)
      F=0.0D0
      DELS=ABS(REAL((EVAL-VVV)/EVAL))
      VVV=REAL(EVAL)
*----
*  EVALUATION OF THE TWO ACCELERATION PARAMETERS ALP AND BET
*----
      ALP=1.0D0
      BET=0.0D0
      N=0
      AEAE=0.0D0
      AEAG=0.0D0
      AEAH=0.0D0
      AGAG=0.0D0
      AGAH=0.0D0
      AHAH=0.0D0
      BEBG=0.0D0
      BEBH=0.0D0
      BGBG=0.0D0
      BGBH=0.0D0
      BHBH=0.0D0
      AEBG=0.0D0
      AEBH=0.0D0
      AGBE=0.0D0
      AGBG=0.0D0
      AGBH=0.0D0
      AHBE=0.0D0
      AHBG=0.0D0
      AHBH=0.0D0
      CALL FLDDEF(NUN,IPTRK,IPSYS,LL4,ITY,NGRP,IMOD,LMOD,EVECT,ADECT,
     1 GRAD1(1,1),1,VEA2,VEB2)
      IF(1+MOD(M-ISTART,ICL1+ICL2).GT.ICL1) THEN
         DO 125 IGR=1,NGRP
         DO 120 I=1,LL4
*        COMPUTE (A ,A )
         AEAE=AEAE+VEA1(I,IGR)**2
         AEAG=AEAG+VEA1(I,IGR)*VEA2(I,IGR)
         AEAH=AEAH+VEA1(I,IGR)*VEA3(I,IGR)
         AGAG=AGAG+VEA2(I,IGR)**2
         AGAH=AGAH+VEA2(I,IGR)*VEA3(I,IGR)
         AHAH=AHAH+VEA3(I,IGR)**2
*        COMPUTE (B ,B )
         BEBG=BEBG+VEB1(I,IGR)*VEB2(I,IGR)
         BEBH=BEBH+VEB1(I,IGR)*VEB3(I,IGR)
         BGBG=BGBG+VEB2(I,IGR)**2
         BGBH=BGBH+VEB2(I,IGR)*VEB3(I,IGR)
         BHBH=BHBH+VEB3(I,IGR)**2
*        COMPUTE (A ,B )
         AEBG=AEBG+VEA1(I,IGR)*VEB2(I,IGR)
         AEBH=AEBH+VEA1(I,IGR)*VEB3(I,IGR)
         AGBE=AGBE+VEA2(I,IGR)*VEB1(I,IGR)
         AGBG=AGBG+VEA2(I,IGR)*VEB2(I,IGR)
         AGBH=AGBH+VEA2(I,IGR)*VEB3(I,IGR)
         AHBE=AHBE+VEA3(I,IGR)*VEB1(I,IGR)
         AHBG=AHBG+VEA3(I,IGR)*VEB2(I,IGR)
         AHBH=AHBH+VEA3(I,IGR)*VEB3(I,IGR)
  120    CONTINUE
  125    CONTINUE
*
  130    N=N+1
         IF(N.GT.10) GO TO 135
*        COMPUTE X(M+1)
         X=BEBE+ALP*ALP*BGBG+BET*BET*BHBH+2.0D0*(ALP*BEBG+BET*BEBH
     1   +ALP*BET*BGBH)
         DXDA=2.0D0*(BEBG+ALP*BGBG+BET*BGBH)
         DXDB=2.0D0*(BEBH+ALP*BGBH+BET*BHBH)
*        COMPUTE Y(M+1)
         Y=AEAE+ALP*ALP*AGAG+BET*BET*AHAH+2.0D0*(ALP*AEAG+BET*AEAH
     1   +ALP*BET*AGAH)
         DYDA=2.0D0*(AEAG+ALP*AGAG+BET*AGAH)
         DYDB=2.0D0*(AEAH+ALP*AGAH+BET*AHAH)
*        COMPUTE Z(M+1)
         Z=AEBE+ALP*ALP*AGBG+BET*BET*AHBH+ALP*(AEBG+AGBE)
     1   +BET*(AEBH+AHBE)+ALP*BET*(AGBH+AHBG)
         DZDA=AEBG+AGBE+2.0D0*ALP*AGBG+BET*(AGBH+AHBG)
         DZDB=AEBH+AHBE+ALP*(AGBH+AHBG)+2.0D0*BET*AHBH
*        COMPUTE F(M+1)
         F=X*Y-Z*Z
         D2F(1,1)=2.0D0*(BGBG*Y+DXDA*DYDA+X*AGAG-DZDA**2-2.0D0*Z*AGBG)
         D2F(1,2)=2.0D0*BGBH*Y+DXDA*DYDB+DXDB*DYDA+2.0D0*X*AGAH
     1   -2.0D0*DZDA*DZDB-2.0D0*Z*(AGBH+AHBG)
         D2F(2,2)=2.0D0*(BHBH*Y+DXDB*DYDB+X*AHAH-DZDB**2-2.0D0*Z*AHBH)
         D2F(2,1)=D2F(1,2)
         D2F(1,3)=DXDA*Y+X*DYDA-2.0D0*Z*DZDA
         D2F(2,3)=DXDB*Y+X*DYDB-2.0D0*Z*DZDB
*        SOLUTION OF A LINEAR SYSTEM.
         CALL ALSBD(2,1,D2F,IER,2)
         IF(IER.NE.0) GO TO 135
         ALP=ALP-D2F(1,3)
         BET=BET-D2F(2,3)
         IF(ALP.GT.100.0) GO TO 135
         IF((ABS(D2F(1,3)).LE.1.0D-4).AND.(ABS(D2F(2,3)).LE.1.0D-4))
     1   GO TO 140
         GO TO 130
*
*        alternative algorithm in case of Newton-Raphton failure
  135    IF(IMPX.GT.0) WRITE(6,'(/30H FLDMON: FAILURE OF THE NEWTON,
     1   55H-RAPHTON ALGORIHTHM FOR COMPUTING THE OVERRELAXATION PA,
     2   12HRAMETERS(1).)')
         IAMIN=999
         IBMIN=999
         FMIN=HUGE(FMIN)
         DO IA=1,SIZE(ALP_TAB)
           ALP=ALP_TAB(IA)
           DO IB=1,SIZE(BET_TAB)
             BET=BET_TAB(IB)
*            COMPUTE X
             X=BEBE+ALP*ALP*BGBG+BET*BET*BHBH+2.0D0*(ALP*BEBG+BET*BEBH
     1       +ALP*BET*BGBH)
*            COMPUTE Y
             Y=AEAE+ALP*ALP*AGAG+BET*BET*AHAH+2.0D0*(ALP*AEAG+BET*AEAH
     1       +ALP*BET*AGAH)
*            COMPUTE Z
             Z=AEBE+ALP*ALP*AGBG+BET*BET*AHBH+ALP*(AEBG+AGBE)
     1       +BET*(AEBH+AHBE)+ALP*BET*(AGBH+AHBG)
*            COMPUTE F
             F=X*Y-Z*Z
             IF(F.LT.FMIN) THEN
               IAMIN=IA
               IBMIN=IB
               FMIN=F
             ENDIF
           ENDDO
         ENDDO
         ALP=ALP_TAB(IAMIN)
         BET=BET_TAB(IBMIN)
  140    BET=BET/ALP
         IF((ALP.LT.1.0D0).AND.(ALP.GT.0.0D0)) THEN
            ALP=1.0D0
            BET=0.0D0
         ELSE IF(ALP.LE.0.0D0) THEN
            ISTART=M+1
            ALP=1.0D0
            BET=0.0D0
         ENDIF
         DO 155 IGR=1,NGRP
         DO 150 I=1,LL4
         GRAD1(I,IGR)=REAL(ALP)*(GRAD1(I,IGR)+REAL(BET)*GRAD2(I,IGR))
         VEA2(I,IGR)=REAL(ALP)*(VEA2(I,IGR)+REAL(BET)*VEA3(I,IGR))
         VEB2(I,IGR)=REAL(ALP)*(VEB2(I,IGR)+REAL(BET)*VEB3(I,IGR))
  150    CONTINUE
  155    CONTINUE
      ENDIF
      CALL KDRCPU(TK2)
      TKB=TKB+(TK2-TK1)
*
      LOGTES=(M.LT.ICL1).OR.(MOD(M-ISTART,ICL1+ICL2).EQ.ICL1-1)
      IF(LOGTES.AND.(DELS.LE.EPS1)) THEN
         DELT=0.0
         DO 170 IGR=1,NGRP
         DELN=0.0
         DELD=0.0
         DO 160 I=1,LL4
         EVECT(I,IGR,IMOD)=EVECT(I,IGR,IMOD)+GRAD1(I,IGR)
         VEA1(I,IGR)=VEA1(I,IGR)+VEA2(I,IGR)
         VEB1(I,IGR)=VEB1(I,IGR)+VEB2(I,IGR)
         GRAD2(I,IGR)=GRAD1(I,IGR)
         VEA3(I,IGR)=VEA2(I,IGR)
         VEB3(I,IGR)=VEB2(I,IGR)
         DELN=MAX(DELN,ABS(VEB2(I,IGR)))
         DELD=MAX(DELD,ABS(VEB1(I,IGR)))
  160    CONTINUE
         IF(DELD.NE.0.0) DELT=MAX(DELT,DELN/DELD)
  170    CONTINUE
         IF(IMPX.GE.2) WRITE (6,615) M,AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,
     1   BEBE,ALP,BET,EVAL,F,DELS,DELT,N,BEBG,BEBH,BGBG,BGBH,BHBH,
     2   AEBE,AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH
*        COMPUTE THE CONVERGENCE HISTOGRAM.
         IF((IMPH.GE.1).AND.(M.LE.MMAXX)) THEN
            JPFLUX=LCMGID(IPFLUX,'MODE')
            KPFLUX=LCMGIL(JPFLUX,IMOD)
            CALL FLDXCO(KPFLUX,LL4,NUN,EVECT(1,NGRP,IMOD),.TRUE.,ERR(M))
            ALPH(M)=REAL(ALP)
            BETA(M)=REAL(BET)
         ENDIF
         IF(DELT.LE.EPS2) GO TO 190
      ELSE
         DO 185 IGR=1,NGRP
         DO 180 I=1,LL4
         EVECT(I,IGR,IMOD)=EVECT(I,IGR,IMOD)+GRAD1(I,IGR)
         VEA1(I,IGR)=VEA1(I,IGR)+VEA2(I,IGR)
         VEB1(I,IGR)=VEB1(I,IGR)+VEB2(I,IGR)
         GRAD2(I,IGR)=GRAD1(I,IGR)
         VEA3(I,IGR)=VEA2(I,IGR)
         VEB3(I,IGR)=VEB2(I,IGR)
  180    CONTINUE
  185    CONTINUE
         IF(IMPX.GE.2) WRITE (6,620) M,AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,
     1   BEBE,ALP,BET,EVAL,F,DELS,N,BEBG,BEBH,BGBG,BGBH,BHBH,AEBE,
     2   AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH
*        COMPUTE THE CONVERGENCE HISTOGRAM.
         IF((IMPH.GE.1).AND.(M.LE.MMAXX)) THEN
            JPFLUX=LCMGID(IPFLUX,'MODE')
            KPFLUX=LCMGIL(JPFLUX,IMOD)
            CALL FLDXCO(KPFLUX,LL4,NUN,EVECT(1,NGRP,IMOD),.TRUE.,ERR(M))
            ALPH(M)=REAL(ALP)
            BETA(M)=REAL(BET)
         ENDIF
      ENDIF
*
      IF(M.EQ.1) TEST=DELS
      IF((M.GT.5).AND.(DELS.GT.TEST)) CALL XABORT('FLDMON: CONVERGENCE'
     1 //' FAILURE.')
      IF(M.GE.MAXOUT) THEN
         WRITE (6,'(/46H FLDMON: ***WARNING*** MAXIMUM NUMBER OF ITERA,
     1   17HTIONS IS REACHED.)')
         GO TO 190
      ENDIF
      IF(MOD(M,36).EQ.0) THEN
         ISTART=M+1
         NNADI=NNADI+1
         IF(IMPX.GE.1) WRITE (6,700) NNADI
      ENDIF
      GO TO 50
*----
*  DIRECT SOLUTION EDITION
*----
  190 Z1=1.0D0/EVAL
      IF(IMPX.GE.1) WRITE (6,630) 1.0D0/EVAL
      IF(IMPX.EQ.1) WRITE (6,640) M
      IF(IMPX.EQ.3) THEN
         DO 210 IGR=1,NGRP
         WRITE (6,660) 'DIRECT',IGR,(EVECT(I,IGR,IMOD),I=1,LL4)
  210    CONTINUE
      ENDIF
      IF(IMPH.EQ.1) THEN
         JPFLUX=LCMGID(IPFLUX,'MODE')
         KPFLUX=LCMGIL(JPFLUX,IMOD)
         CALL LCMLEN(KPFLUX,'REF',ILONG,ITYLCM)
         IF(ILONG.EQ.0) THEN
            WRITE(6,'(44H FLDMON: STORE A REFERENCE THERMAL HARMONIC.)')
            CALL LCMPUT(KPFLUX,'REF',NUN,2,EVECT(1,NGRP,IMOD))
         ENDIF
      ELSE IF(IMPH.GE.2) THEN
         JPFLUX=LCMGID(IPFLUX,'MODE')
         KPFLUX=LCMGIL(JPFLUX,IMOD)
         IGRAPH=0
  215    IGRAPH=IGRAPH+1
         WRITE (TEXT12,'(5HHISTO,I3)') IGRAPH
         CALL LCMLEN (KPFLUX,TEXT12,ILENG,ITYLCM)
         IF(ILENG.EQ.0) THEN
            MM=MIN(M,MMAXX)
            CALL LCMSIX (KPFLUX,TEXT12,1)
            CALL LCMPTC (KPFLUX,'HTITLE',72,TITR)
            CALL LCMPUT (KPFLUX,'ALPHA',MM,2,ALPH)
            CALL LCMPUT (KPFLUX,'BETA',MM,2,BETA)
            CALL LCMPUT (KPFLUX,'ERROR',MM,2,ERR)
            CALL LCMPUT (KPFLUX,'IMPH',1,1,IMPH)
            CALL LCMSIX (KPFLUX,' ',2)
         ELSE
            GO TO 215
         ENDIF
      ENDIF
*----
*  PRECONDITIONED POWER METHOD FOR THE ADJOINT PROBLEM
*----
      CALL KDRCPU(TK1)
      EVAL=1.0D0
      VVV=0.0
      ISTART=1
      NNADI=NADI
      TEST=0.0
      IF(IMPX.GE.1) WRITE (6,600) NADI,'ADJOINT'
      IF(IMPX.GE.2) WRITE (6,610)
      CALL FLDDEF(NUN,IPTRK,IPSYS,LL4,ITY,NGRP,IMOD,LMOD,EVECT,ADECT,
     1 ADECT(1,1,IMOD),2,VEA1,VEB1)
      CALL KDRCPU(TK2)
      TKB=TKB+(TK2-TK1)
      M=0
  220 M=M+1
*----
*  EIGENVALUE CALCULATION
*----
      CALL KDRCPU(TK1)
      AEBE=0.0D0
      BEBE=0.0D0
      DO 235 IGR=1,NGRP
      DO 230 I=1,LL4
      AEBE=AEBE+VEA1(I,IGR)*VEB1(I,IGR)
      BEBE=BEBE+VEB1(I,IGR)**2
  230 CONTINUE
  235 CONTINUE
      EVAL=AEBE/BEBE
      CALL KDRCPU(TK2)
      TKB=TKB+(TK2-TK1)
*----
*  DIRECTION EVALUATION
*----
      DO 280 IGR=NGRP,1,-1
      CALL KDRCPU(TK1)
      DO 240 I=1,LL4
      GRAD1(I,IGR)=REAL(EVAL)*VEB1(I,IGR)-VEA1(I,IGR)
  240 CONTINUE
      DO 270 JGR=NGRP,IGR+1,-1
      WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
      CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
      IF(ILONG.EQ.0) GO TO 270
      IF(ITY.EQ.13) THEN
         CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,JGR),AGAR)
         DO 250 I=1,LL4
         GRAD1(I,IGR)=GRAD1(I,IGR)+AGAR(I)
  250    CONTINUE
      ELSE
         CALL LCMGPD(IPSYS,TEXT12,AGARM_PTR)
         CALL C_F_POINTER(AGARM_PTR,AGARM,(/ ILONG /))
         DO 260 I=1,ILONG
         GRAD1(I,IGR)=GRAD1(I,IGR)+AGARM(I)*GRAD1(I,JGR)
  260    CONTINUE
      ENDIF
  270 CONTINUE
      CALL KDRCPU(TK2)
      TKB=TKB+(TK2-TK1)
*
      CALL KDRCPU(TK1)
      WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
      CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,IGR),NNADI)
      CALL KDRCPU(TK2)
      TKT=TKT+(TK2-TK1)
  280 CONTINUE
*----
*  PERFORM THERMAL (UP-SCATTERING) ITERATIONS
*----
      IF(MAXINR.GT.1) THEN
         CALL FLDTHR(IPTRK,IPSYS,IPFLUX,.TRUE.,LL4,ITY,NUN,NGRP,ICL1,
     1   ICL2,IMPX,NNADI,0,MAXINR,EPSINR,ITER,TKT,TKB,GRAD1)
      ENDIF
*----
*  DISPLACEMENT EVALUATION
*----
      CALL KDRCPU(TK1)
      F=0.0D0
      DELS=ABS(REAL((EVAL-VVV)/EVAL))
      VVV=REAL(EVAL)
*----
*  EVALUATION OF THE TWO ACCELERATION PARAMETERS ALP AND BET
*----
      ALP=1.0D0
      BET=0.0D0
      N=0
      AEAE=0.0D0
      AEAG=0.0D0
      AEAH=0.0D0
      AGAG=0.0D0
      AGAH=0.0D0
      AHAH=0.0D0
      BEBG=0.0D0
      BEBH=0.0D0
      BGBG=0.0D0
      BGBH=0.0D0
      BHBH=0.0D0
      AEBG=0.0D0
      AEBH=0.0D0
      AGBE=0.0D0
      AGBG=0.0D0
      AGBH=0.0D0
      AHBE=0.0D0
      AHBG=0.0D0
      AHBH=0.0D0
      CALL FLDDEF(NUN,IPTRK,IPSYS,LL4,ITY,NGRP,IMOD,LMOD,EVECT,ADECT,
     1 GRAD1(1,1),2,VEA2,VEB2)
      IF(1+MOD(M-ISTART,ICL1+ICL2).GT.ICL1) THEN
         DO 295 IGR=1,NGRP
         DO 290 I=1,LL4
*        COMPUTE (A ,A )
         AEAE=AEAE+VEA1(I,IGR)**2
         AEAG=AEAG+VEA1(I,IGR)*VEA2(I,IGR)
         AEAH=AEAH+VEA1(I,IGR)*VEA3(I,IGR)
         AGAG=AGAG+VEA2(I,IGR)**2
         AGAH=AGAH+VEA2(I,IGR)*VEA3(I,IGR)
         AHAH=AHAH+VEA3(I,IGR)**2
*        COMPUTE (B ,B )
         BEBG=BEBG+VEB1(I,IGR)*VEB2(I,IGR)
         BEBH=BEBH+VEB1(I,IGR)*VEB3(I,IGR)
         BGBG=BGBG+VEB2(I,IGR)**2
         BGBH=BGBH+VEB2(I,IGR)*VEB3(I,IGR)
         BHBH=BHBH+VEB3(I,IGR)**2
*        COMPUTE (A ,B )
         AEBG=AEBG+VEA1(I,IGR)*VEB2(I,IGR)
         AEBH=AEBH+VEA1(I,IGR)*VEB3(I,IGR)
         AGBE=AGBE+VEA2(I,IGR)*VEB1(I,IGR)
         AGBG=AGBG+VEA2(I,IGR)*VEB2(I,IGR)
         AGBH=AGBH+VEA2(I,IGR)*VEB3(I,IGR)
         AHBE=AHBE+VEA3(I,IGR)*VEB1(I,IGR)
         AHBG=AHBG+VEA3(I,IGR)*VEB2(I,IGR)
         AHBH=AHBH+VEA3(I,IGR)*VEB3(I,IGR)
  290    CONTINUE
  295    CONTINUE
*
  300    N=N+1
         IF(N.GT.10) GO TO 305
*        COMPUTE X(M+1)
         X=BEBE+ALP*ALP*BGBG+BET*BET*BHBH+2.0D0*(ALP*BEBG+BET*BEBH
     1   +ALP*BET*BGBH)
         DXDA=2.0D0*(BEBG+ALP*BGBG+BET*BGBH)
         DXDB=2.0D0*(BEBH+ALP*BGBH+BET*BHBH)
*        COMPUTE Y(M+1)
         Y=AEAE+ALP*ALP*AGAG+BET*BET*AHAH+2.0D0*(ALP*AEAG+BET*AEAH
     1   +ALP*BET*AGAH)
         DYDA=2.0D0*(AEAG+ALP*AGAG+BET*AGAH)
         DYDB=2.0D0*(AEAH+ALP*AGAH+BET*AHAH)
*        COMPUTE Z(M+1)
         Z=AEBE+ALP*ALP*AGBG+BET*BET*AHBH+ALP*(AEBG+AGBE)
     1   +BET*(AEBH+AHBE)+ALP*BET*(AGBH+AHBG)
         DZDA=AEBG+AGBE+2.0D0*ALP*AGBG+BET*(AGBH+AHBG)
         DZDB=AEBH+AHBE+ALP*(AGBH+AHBG)+2.0D0*BET*AHBH
*        COMPUTE F(M+1)
         F=X*Y-Z*Z
         D2F(1,1)=2.0D0*(BGBG*Y+DXDA*DYDA+X*AGAG-DZDA**2-2.0D0*Z*AGBG)
         D2F(1,2)=2.0D0*BGBH*Y+DXDA*DYDB+DXDB*DYDA+2.0D0*X*AGAH
     1   -2.0D0*DZDA*DZDB-2.0D0*Z*(AGBH+AHBG)
         D2F(2,2)=2.0D0*(BHBH*Y+DXDB*DYDB+X*AHAH-DZDB**2-2.0D0*Z*AHBH)
         D2F(2,1)=D2F(1,2)
         D2F(1,3)=DXDA*Y+X*DYDA-2.0D0*Z*DZDA
         D2F(2,3)=DXDB*Y+X*DYDB-2.0D0*Z*DZDB
*        SOLUTION OF A LINEAR SYSTEM.
         CALL ALSBD(2,1,D2F,IER,2)
         IF(IER.NE.0) GO TO 305
         ALP=ALP-D2F(1,3)
         BET=BET-D2F(2,3)
         IF(ALP.GT.100.0) GO TO 305
         IF((ABS(D2F(1,3)).LE.1.0D-4).AND.(ABS(D2F(2,3)).LE.1.0D-4))
     1   GO TO 310
         GO TO 300
*
*        alternative algorithm in case of Newton-Raphton failure
  305    IF(IMPX.GT.0) WRITE(6,'(/30H FLDMON: FAILURE OF THE NEWTON,
     1   55H-RAPHTON ALGORIHTHM FOR COMPUTING THE OVERRELAXATION PA,
     2   12HRAMETERS(2).)')
         IAMIN=999
         IBMIN=999
         FMIN=HUGE(FMIN)
         DO IA=1,SIZE(ALP_TAB)
           ALP=ALP_TAB(IA)
           DO IB=1,SIZE(BET_TAB)
             BET=BET_TAB(IB)
*            COMPUTE X
             X=BEBE+ALP*ALP*BGBG+BET*BET*BHBH+2.0D0*(ALP*BEBG+BET*BEBH
     1       +ALP*BET*BGBH)
*            COMPUTE Y
             Y=AEAE+ALP*ALP*AGAG+BET*BET*AHAH+2.0D0*(ALP*AEAG+BET*AEAH
     1       +ALP*BET*AGAH)
*            COMPUTE Z
             Z=AEBE+ALP*ALP*AGBG+BET*BET*AHBH+ALP*(AEBG+AGBE)
     1       +BET*(AEBH+AHBE)+ALP*BET*(AGBH+AHBG)
*            COMPUTE F
             F=X*Y-Z*Z
             IF(F.LT.FMIN) THEN
               IAMIN=IA
               IBMIN=IB
               FMIN=F
             ENDIF
           ENDDO
         ENDDO
         ALP=ALP_TAB(IAMIN)
         BET=BET_TAB(IBMIN)
  310    BET=BET/ALP
*
         IF((ALP.LT.1.0D0).AND.(ALP.GT.0.0D0)) THEN
            ALP=1.0D0
            BET=0.0D0
         ELSE IF(ALP.LE.0.0D0) THEN
            ISTART=M+1
            ALP=1.0D0
            BET=0.0D0
         ENDIF
         DO 325 IGR=1,NGRP
         DO 320 I=1,LL4
         GRAD1(I,IGR)=REAL(ALP)*(GRAD1(I,IGR)+REAL(BET)*GRAD2(I,IGR))
         VEA2(I,IGR)=REAL(ALP)*(VEA2(I,IGR)+REAL(BET)*VEA3(I,IGR))
         VEB2(I,IGR)=REAL(ALP)*(VEB2(I,IGR)+REAL(BET)*VEB3(I,IGR))
  320    CONTINUE
  325    CONTINUE
      ENDIF
      CALL KDRCPU(TK2)
      TKB=TKB+(TK2-TK1)
*
      LOGTES=(M.LT.ICL1).OR.(MOD(M-ISTART,ICL1+ICL2).EQ.ICL1-1)
      IF(LOGTES.AND.(DELS.LE.EPS1))THEN
         DELT=0.0
         DO 340 IGR=1,NGRP
         DELN=0.0
         DELD=0.0
         DO 330 I=1,LL4
         ADECT(I,IGR,IMOD)=ADECT(I,IGR,IMOD)+GRAD1(I,IGR)
         VEA1(I,IGR)=VEA1(I,IGR)+VEA2(I,IGR)
         VEB1(I,IGR)=VEB1(I,IGR)+VEB2(I,IGR)
         GRAD2(I,IGR)=GRAD1(I,IGR)
         VEA3(I,IGR)=VEA2(I,IGR)
         VEB3(I,IGR)=VEB2(I,IGR)
         DELN=MAX(DELN,ABS(VEB2(I,IGR)))
         DELD=MAX(DELD,ABS(VEB1(I,IGR)))
  330    CONTINUE
         IF(DELD.NE.0.0) DELT=MAX(DELT,DELN/DELD)
  340    CONTINUE
         IF(IMPX.GE.2) WRITE (6,615) M,AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,
     1   BEBE,ALP,BET,EVAL,F,DELS,DELT,N,BEBG,BEBH,BGBG,BGBH,BHBH,AEBE,
     2   AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH
         IF(DELT.LE.EPS2) GO TO 360
      ELSE
         DO 355 IGR=1,NGRP
         DO 350 I=1,LL4
         ADECT(I,IGR,IMOD)=ADECT(I,IGR,IMOD)+GRAD1(I,IGR)
         VEA1(I,IGR)=VEA1(I,IGR)+VEA2(I,IGR)
         VEB1(I,IGR)=VEB1(I,IGR)+VEB2(I,IGR)
         GRAD2(I,IGR)=GRAD1(I,IGR)
         VEA3(I,IGR)=VEA2(I,IGR)
         VEB3(I,IGR)=VEB2(I,IGR)
  350    CONTINUE
  355    CONTINUE
         IF(IMPX.GE.2) WRITE (6,620) M,AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,
     1   BEBE,ALP,BET,EVAL,F,DELS,N,BEBG,BEBH,BGBG,BGBH,BHBH,AEBE,
     2   AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH
      ENDIF
      IF(M.EQ.1) TEST=DELS
      IF((M.GT.5).AND.(DELS.GT.TEST)) CALL XABORT('FLDMON: CONVERGENCE'
     1 //' FAILURE.')
      IF(M.GE.MAXOUT) THEN
         WRITE (6,'(/46H FLDMON: ***WARNING*** MAXIMUM NUMBER OF ITERA,
     1   17HTIONS IS REACHED.)')
         GO TO 360
      ENDIF
      IF(MOD(M,36).EQ.0) THEN
         ISTART=M+1
         NNADI=NNADI+1
         IF(IMPX.GE.1) WRITE (6,700) NNADI
      ENDIF
      GO TO 220
*----
*  ADJOINT SOLUTION EDITION
*----
  360 IF(IMPX.GE.1) WRITE (6,630) 1.0D0/EVAL
      IF(IMPX.EQ.1) WRITE (6,640) M
      IF(IMPX.EQ.3) THEN
         DO 380 IGR=1,NGRP
         WRITE (6,660) 'ADJOINT',IGR,(ADECT(I,IGR,IMOD),I=1,LL4)
  380    CONTINUE
      ENDIF
*
      IF(ABS(Z1-1.0D0/EVAL).GT.1.0E-4) CALL XABORT('FLDMON: FAILURE O'
     1 //'F HARMONIC COMPUTATION.')
      FKEFF(IMOD)=REAL(0.5D0*(Z1+1.0D0/EVAL))
  390 CONTINUE
      IF(IMPX.GE.1) THEN
        WRITE (6,650) TKT,TKB,TKT+TKB
        WRITE (6,670) (FKEFF(IMOD),IMOD=1,LMOD)
      ENDIF
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(AGAR,GRAD1,GRAD2,VEA1,VEA2,VEA3,VEB1,VEB2,VEB3)
      RETURN
*
  600 FORMAT(1H1/50H FLDMON: ITERATIVE PROCEDURE BASED ON PRECONDITION,
     1 17HED POWER METHOD (,I2,37H ADI ITERATIONS PER OUTER ITERATION)./
     2 9X,A7,10H EQUATION.)
  610 FORMAT(//5X,17HBILINEAR PRODUCTS,48X,5HALPHA,3X,4HBETA,3X,
     1 12HEIGENVALUE..,12X,8HACCURACY,11(1H.),2X,1HN)
  615 FORMAT(1X,I3,1P,7E9.1,0P,2F8.3,E14.6,3E10.2,I4/(4X,1P,7E9.1))
  620 FORMAT(1X,I3,1P,7E9.1,0P,2F8.3,E14.6,2E10.2,10X,I4/(4X,1P,7E9.1))
  630 FORMAT(/42H FLDMON: EFFECTIVE MULTIPLICATION FACTOR =,1P,D17.10/)
  640 FORMAT(/23H FLDMON: CONVERGENCE IN,I5,12H ITERATIONS.)
  650 FORMAT(/53H FLDMON: CPU TIME USED TO SOLVE THE TRIANGULAR LINEAR,
     1 10H SYSTEMS =,F10.3/23X,34HTO COMPUTE THE BILINEAR PRODUCTS =,
     2 F10.3,20X,16HTOTAL CPU TIME =,F10.3)
  660 FORMAT(//9H FLDMON: ,A7,37H EIGENVECTOR CORRESPONDING TO THE GRO,
     1 2HUP,I4//(5X,1P,8E14.5))
  670 FORMAT(//21H FLDMON: EIGENVALUES:/(5X,1P,E17.10))
  700 FORMAT(/53H FLDMON: INCREASING THE NUMBER OF INNER ITERATIONS TO,
     1 I3,36H ADI ITERATIONS PER OUTER ITERATION./)
      END