1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
|
*DECK FLDMON
SUBROUTINE FLDMON (IPTRK,IPSYS,IPFLUX,LL4,ITY,NUN,NGRP,LMOD,ICL1,
1 ICL2,IMPX,IMPH,TITR,EPS2,NADI,MAXOUT,MAXINR,EPSINR,RAND,FKEFF,
2 EVECT,ADECT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of multigroup eigenvalue systems for the calculation of the
* LMOD first bi-orthogonal harmonics of the diffusion equation in
* Trivac. Use the preconditionned power method with Hotelling deflation
* and a two-parameter SVAT acceleration technique.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK L_TRACK pointer to the tracking information.
* IPSYS L_SYSTEM pointer to system matrices.
* IPFLUX L_FLUX pointer to the solution.
* LL4 order of the system matrices.
* ITY type of solution (2: classical Trivac; 3: Thomas-Raviart).
* NUN number of unknowns in each energy group.
* NGRP number of energy groups.
* LMOD number of bi-orthogonal harmonics to compute.
* ICL1 number of free iterations in one cycle of the inverse power
* method.
* ICL2 number of accelerated iterations in one cycle.
* IMPX print parameter: =0: no print ; =1: minimum printing;
* =2: iteration history is printed; =3: solution is printed.
* IMPH type of histogram processing:
* =0: no action is taken;
* =1: the flux is compared to a reference flux stored on LCM
* =2: the convergence histogram is printed;
* =3: the convergence histogram is printed with axis and
* titles. The plotting file is completed;
* =4: the convergence histogram is printed with axis, acce-
* leration factors and titles. The plotting file is
* completed.
* TITR title.
* EPS2 convergence criteria for the flux.
* NADI number of inner ADI iterations per outer iteration.
* MAXOUT maximum number of outer iterations.
* MAXINR maximum number of thermal iterations.
* EPSINR thermal iteration epsilon.
* RAND initialization flag:
* =.true. use an initial random flux; =.false. use a flat flux.
*
*Parameters: output
* FKEFF effective multiplication factor of each harmonic.
* EVECT converged direct harmonic vector.
* ADECT converged adjoint harmonic vector.
*
*References:
* A. H\'ebert, 'Preconditioning the power method for reactor
* calculations', Nucl. Sci. Eng., 94, 1 (1986).
* J. H. Wilkinson, "The algebraic eigenvalue problem", Clarendon
* Press, Oxford, p. 584, 1965.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
CHARACTER TITR*72
INTEGER LL4,ITY,NUN,NGRP,LMOD,ICL1,ICL2,IMPX,IMPH,NADI,MAXOUT,
1 MAXINR
REAL EPS2,EPSINR,FKEFF(LMOD),EVECT(NUN,NGRP,LMOD),
1 ADECT(NUN,NGRP,LMOD)
LOGICAL RAND
*----
* LOCAL VARIABLES
*----
PARAMETER (MMAXX=250,EPS1=1.0E-5)
PARAMETER (IM=714025,ID=1366,IC=150889,RM=1.4005112E-6)
CHARACTER*12 TEXT12
LOGICAL LOGTES
DOUBLE PRECISION AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,BEBE,BEBG,BEBH,
1 BGBG,BGBH,BHBH,AEBE,AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH,
2 X,DXDA,DXDB,Y,DYDA,DYDB,Z,DZDA,DZDB,F,D2F(2,3),EVAL,ALP,BET,Z1,
3 FMIN
TYPE(C_PTR) JPFLUX,KPFLUX,MPFLUX,NPFLUX
REAL ERR(MMAXX),ALPH(MMAXX),BETA(MMAXX)
DOUBLE PRECISION, PARAMETER :: ALP_TAB(24) = (/ 0.2, 0.4, 0.6,
1 0.8, 1.0, 1.2, 1.5, 2.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
2 40.0, 45.0, 50.0, 55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0 /)
DOUBLE PRECISION, PARAMETER :: BET_TAB(11) = (/ -1.0, -0.8, -0.6,
1 -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 /)
REAL, DIMENSION(:), ALLOCATABLE :: AGAR
REAL, DIMENSION(:,:), ALLOCATABLE :: GRAD1,GRAD2,VEA1,VEA2,VEA3,
1 VEB1,VEB2,VEB3
REAL, DIMENSION(:), POINTER :: AGARM
TYPE(C_PTR) AGARM_PTR
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(AGAR(LL4),GRAD1(NUN,NGRP),GRAD2(NUN,NGRP),VEA1(NUN,NGRP),
1 VEA2(NUN,NGRP),VEA3(NUN,NGRP),VEB1(NUN,NGRP),VEB2(NUN,NGRP),
2 VEB3(NUN,NGRP))
*
* TKT : CPU TIME FOR THE SOLUTION OF LINEAR SYSTEMS.
* TKB : CPU TIME FOR BILINEAR PRODUCT EVALUATIONS.
TKT=0.0
TKB=0.0
CALL MTOPEN(IMPX,IPTRK,LL4)
IF(LL4.GT.NUN) CALL XABORT('FLDMON: INVALID NUMBER OF UNKNOWNS.')
*
DO 390 IMOD=1,LMOD
CALL KDRCPU(TK1)
IF(IMPX.GE.1) WRITE (6,'(1H1//13H HARMONIC NB.,I3//)') IMOD
CALL LCMLEN(IPFLUX,'MODE',ILONG,ITYLCM)
IF((ILONG.NE.0).AND.(IMPH.EQ.0)) THEN
JPFLUX=LCMGID(IPFLUX,'MODE')
KPFLUX=LCMGIL(JPFLUX,IMOD)
MPFLUX=LCMGID(KPFLUX,'FLUX')
NPFLUX=LCMGID(KPFLUX,'AFLUX')
DO 10 IGR=1,NGRP
CALL LCMGDL(MPFLUX,IGR,EVECT(1,IGR,IMOD))
CALL LCMGDL(NPFLUX,IGR,ADECT(1,IGR,IMOD))
10 CONTINUE
ELSE IF((IMOD.EQ.1).OR.(.NOT.RAND)) THEN
* UNIFORM UNKNOWN VECTOR.
DO 25 IGR=1,NGRP
DO 20 I=1,NUN
EVECT(I,IGR,IMOD)=1.0
ADECT(I,IGR,IMOD)=1.0
20 CONTINUE
25 CONTINUE
ELSE
* RANDOM UNKNOWN VECTOR.
ISEED=0
DO 35 IGR=1,NGRP
DO 30 I=1,NUN
ISEED=MOD(ISEED*ID+IC,IM)
RAN=REAL(ISEED)*RM
EVECT(I,IGR,IMOD)=RAN
ADECT(I,IGR,IMOD)=RAN
30 CONTINUE
35 CONTINUE
ENDIF
*----
* PRECONDITIONED POWER METHOD FOR THE DIRECT PROBLEM
*----
EVAL=1.0D0
VVV=0.0
ISTART=1
NNADI=NADI
TEST=0.0
IF(IMPX.GE.1) WRITE (6,600) NADI,'DIRECT'
IF(IMPX.GE.2) WRITE (6,610)
CALL FLDDEF(NUN,IPTRK,IPSYS,LL4,ITY,NGRP,IMOD,LMOD,EVECT,ADECT,
1 EVECT(1,1,IMOD),1,VEA1,VEB1)
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
M=0
50 M=M+1
*----
* EIGENVALUE EVALUATION
*----
CALL KDRCPU(TK1)
AEBE=0.0D0
BEBE=0.0D0
DO 65 IGR=1,NGRP
DO 60 I=1,LL4
AEBE=AEBE+VEA1(I,IGR)*VEB1(I,IGR)
BEBE=BEBE+VEB1(I,IGR)**2
60 CONTINUE
65 CONTINUE
EVAL=AEBE/BEBE
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
*----
* DIRECTION EVALUATION
*----
DO 110 IGR=1,NGRP
CALL KDRCPU(TK1)
DO 70 I=1,LL4
GRAD1(I,IGR)=REAL(EVAL)*VEB1(I,IGR)-VEA1(I,IGR)
70 CONTINUE
DO 100 JGR=1,IGR-1
WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 100
IF(ITY.EQ.13) THEN
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,JGR),AGAR)
DO 80 I=1,LL4
GRAD1(I,IGR)=GRAD1(I,IGR)+AGAR(I)
80 CONTINUE
ELSE
CALL LCMGPD(IPSYS,TEXT12,AGARM_PTR)
CALL C_F_POINTER(AGARM_PTR,AGARM,(/ ILONG /))
DO 90 I=1,ILONG
GRAD1(I,IGR)=GRAD1(I,IGR)+AGARM(I)*GRAD1(I,JGR)
90 CONTINUE
ENDIF
100 CONTINUE
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
*
CALL KDRCPU(TK1)
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,IGR),NNADI)
CALL KDRCPU(TK2)
TKT=TKT+(TK2-TK1)
110 CONTINUE
*----
* PERFORM THERMAL (UP-SCATTERING) ITERATIONS
*----
IF(MAXINR.GT.1) THEN
CALL FLDTHR(IPTRK,IPSYS,IPFLUX,.FALSE.,LL4,ITY,NUN,NGRP,ICL1,
1 ICL2,IMPX,NNADI,0,MAXINR,EPSINR,ITER,TKT,TKB,GRAD1)
ENDIF
*----
* DISPLACEMENT EVALUATION
*----
CALL KDRCPU(TK1)
F=0.0D0
DELS=ABS(REAL((EVAL-VVV)/EVAL))
VVV=REAL(EVAL)
*----
* EVALUATION OF THE TWO ACCELERATION PARAMETERS ALP AND BET
*----
ALP=1.0D0
BET=0.0D0
N=0
AEAE=0.0D0
AEAG=0.0D0
AEAH=0.0D0
AGAG=0.0D0
AGAH=0.0D0
AHAH=0.0D0
BEBG=0.0D0
BEBH=0.0D0
BGBG=0.0D0
BGBH=0.0D0
BHBH=0.0D0
AEBG=0.0D0
AEBH=0.0D0
AGBE=0.0D0
AGBG=0.0D0
AGBH=0.0D0
AHBE=0.0D0
AHBG=0.0D0
AHBH=0.0D0
CALL FLDDEF(NUN,IPTRK,IPSYS,LL4,ITY,NGRP,IMOD,LMOD,EVECT,ADECT,
1 GRAD1(1,1),1,VEA2,VEB2)
IF(1+MOD(M-ISTART,ICL1+ICL2).GT.ICL1) THEN
DO 125 IGR=1,NGRP
DO 120 I=1,LL4
* COMPUTE (A ,A )
AEAE=AEAE+VEA1(I,IGR)**2
AEAG=AEAG+VEA1(I,IGR)*VEA2(I,IGR)
AEAH=AEAH+VEA1(I,IGR)*VEA3(I,IGR)
AGAG=AGAG+VEA2(I,IGR)**2
AGAH=AGAH+VEA2(I,IGR)*VEA3(I,IGR)
AHAH=AHAH+VEA3(I,IGR)**2
* COMPUTE (B ,B )
BEBG=BEBG+VEB1(I,IGR)*VEB2(I,IGR)
BEBH=BEBH+VEB1(I,IGR)*VEB3(I,IGR)
BGBG=BGBG+VEB2(I,IGR)**2
BGBH=BGBH+VEB2(I,IGR)*VEB3(I,IGR)
BHBH=BHBH+VEB3(I,IGR)**2
* COMPUTE (A ,B )
AEBG=AEBG+VEA1(I,IGR)*VEB2(I,IGR)
AEBH=AEBH+VEA1(I,IGR)*VEB3(I,IGR)
AGBE=AGBE+VEA2(I,IGR)*VEB1(I,IGR)
AGBG=AGBG+VEA2(I,IGR)*VEB2(I,IGR)
AGBH=AGBH+VEA2(I,IGR)*VEB3(I,IGR)
AHBE=AHBE+VEA3(I,IGR)*VEB1(I,IGR)
AHBG=AHBG+VEA3(I,IGR)*VEB2(I,IGR)
AHBH=AHBH+VEA3(I,IGR)*VEB3(I,IGR)
120 CONTINUE
125 CONTINUE
*
130 N=N+1
IF(N.GT.10) GO TO 135
* COMPUTE X(M+1)
X=BEBE+ALP*ALP*BGBG+BET*BET*BHBH+2.0D0*(ALP*BEBG+BET*BEBH
1 +ALP*BET*BGBH)
DXDA=2.0D0*(BEBG+ALP*BGBG+BET*BGBH)
DXDB=2.0D0*(BEBH+ALP*BGBH+BET*BHBH)
* COMPUTE Y(M+1)
Y=AEAE+ALP*ALP*AGAG+BET*BET*AHAH+2.0D0*(ALP*AEAG+BET*AEAH
1 +ALP*BET*AGAH)
DYDA=2.0D0*(AEAG+ALP*AGAG+BET*AGAH)
DYDB=2.0D0*(AEAH+ALP*AGAH+BET*AHAH)
* COMPUTE Z(M+1)
Z=AEBE+ALP*ALP*AGBG+BET*BET*AHBH+ALP*(AEBG+AGBE)
1 +BET*(AEBH+AHBE)+ALP*BET*(AGBH+AHBG)
DZDA=AEBG+AGBE+2.0D0*ALP*AGBG+BET*(AGBH+AHBG)
DZDB=AEBH+AHBE+ALP*(AGBH+AHBG)+2.0D0*BET*AHBH
* COMPUTE F(M+1)
F=X*Y-Z*Z
D2F(1,1)=2.0D0*(BGBG*Y+DXDA*DYDA+X*AGAG-DZDA**2-2.0D0*Z*AGBG)
D2F(1,2)=2.0D0*BGBH*Y+DXDA*DYDB+DXDB*DYDA+2.0D0*X*AGAH
1 -2.0D0*DZDA*DZDB-2.0D0*Z*(AGBH+AHBG)
D2F(2,2)=2.0D0*(BHBH*Y+DXDB*DYDB+X*AHAH-DZDB**2-2.0D0*Z*AHBH)
D2F(2,1)=D2F(1,2)
D2F(1,3)=DXDA*Y+X*DYDA-2.0D0*Z*DZDA
D2F(2,3)=DXDB*Y+X*DYDB-2.0D0*Z*DZDB
* SOLUTION OF A LINEAR SYSTEM.
CALL ALSBD(2,1,D2F,IER,2)
IF(IER.NE.0) GO TO 135
ALP=ALP-D2F(1,3)
BET=BET-D2F(2,3)
IF(ALP.GT.100.0) GO TO 135
IF((ABS(D2F(1,3)).LE.1.0D-4).AND.(ABS(D2F(2,3)).LE.1.0D-4))
1 GO TO 140
GO TO 130
*
* alternative algorithm in case of Newton-Raphton failure
135 IF(IMPX.GT.0) WRITE(6,'(/30H FLDMON: FAILURE OF THE NEWTON,
1 55H-RAPHTON ALGORIHTHM FOR COMPUTING THE OVERRELAXATION PA,
2 12HRAMETERS(1).)')
IAMIN=999
IBMIN=999
FMIN=HUGE(FMIN)
DO IA=1,SIZE(ALP_TAB)
ALP=ALP_TAB(IA)
DO IB=1,SIZE(BET_TAB)
BET=BET_TAB(IB)
* COMPUTE X
X=BEBE+ALP*ALP*BGBG+BET*BET*BHBH+2.0D0*(ALP*BEBG+BET*BEBH
1 +ALP*BET*BGBH)
* COMPUTE Y
Y=AEAE+ALP*ALP*AGAG+BET*BET*AHAH+2.0D0*(ALP*AEAG+BET*AEAH
1 +ALP*BET*AGAH)
* COMPUTE Z
Z=AEBE+ALP*ALP*AGBG+BET*BET*AHBH+ALP*(AEBG+AGBE)
1 +BET*(AEBH+AHBE)+ALP*BET*(AGBH+AHBG)
* COMPUTE F
F=X*Y-Z*Z
IF(F.LT.FMIN) THEN
IAMIN=IA
IBMIN=IB
FMIN=F
ENDIF
ENDDO
ENDDO
ALP=ALP_TAB(IAMIN)
BET=BET_TAB(IBMIN)
140 BET=BET/ALP
IF((ALP.LT.1.0D0).AND.(ALP.GT.0.0D0)) THEN
ALP=1.0D0
BET=0.0D0
ELSE IF(ALP.LE.0.0D0) THEN
ISTART=M+1
ALP=1.0D0
BET=0.0D0
ENDIF
DO 155 IGR=1,NGRP
DO 150 I=1,LL4
GRAD1(I,IGR)=REAL(ALP)*(GRAD1(I,IGR)+REAL(BET)*GRAD2(I,IGR))
VEA2(I,IGR)=REAL(ALP)*(VEA2(I,IGR)+REAL(BET)*VEA3(I,IGR))
VEB2(I,IGR)=REAL(ALP)*(VEB2(I,IGR)+REAL(BET)*VEB3(I,IGR))
150 CONTINUE
155 CONTINUE
ENDIF
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
*
LOGTES=(M.LT.ICL1).OR.(MOD(M-ISTART,ICL1+ICL2).EQ.ICL1-1)
IF(LOGTES.AND.(DELS.LE.EPS1)) THEN
DELT=0.0
DO 170 IGR=1,NGRP
DELN=0.0
DELD=0.0
DO 160 I=1,LL4
EVECT(I,IGR,IMOD)=EVECT(I,IGR,IMOD)+GRAD1(I,IGR)
VEA1(I,IGR)=VEA1(I,IGR)+VEA2(I,IGR)
VEB1(I,IGR)=VEB1(I,IGR)+VEB2(I,IGR)
GRAD2(I,IGR)=GRAD1(I,IGR)
VEA3(I,IGR)=VEA2(I,IGR)
VEB3(I,IGR)=VEB2(I,IGR)
DELN=MAX(DELN,ABS(VEB2(I,IGR)))
DELD=MAX(DELD,ABS(VEB1(I,IGR)))
160 CONTINUE
IF(DELD.NE.0.0) DELT=MAX(DELT,DELN/DELD)
170 CONTINUE
IF(IMPX.GE.2) WRITE (6,615) M,AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,
1 BEBE,ALP,BET,EVAL,F,DELS,DELT,N,BEBG,BEBH,BGBG,BGBH,BHBH,
2 AEBE,AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH
* COMPUTE THE CONVERGENCE HISTOGRAM.
IF((IMPH.GE.1).AND.(M.LE.MMAXX)) THEN
JPFLUX=LCMGID(IPFLUX,'MODE')
KPFLUX=LCMGIL(JPFLUX,IMOD)
CALL FLDXCO(KPFLUX,LL4,NUN,EVECT(1,NGRP,IMOD),.TRUE.,ERR(M))
ALPH(M)=REAL(ALP)
BETA(M)=REAL(BET)
ENDIF
IF(DELT.LE.EPS2) GO TO 190
ELSE
DO 185 IGR=1,NGRP
DO 180 I=1,LL4
EVECT(I,IGR,IMOD)=EVECT(I,IGR,IMOD)+GRAD1(I,IGR)
VEA1(I,IGR)=VEA1(I,IGR)+VEA2(I,IGR)
VEB1(I,IGR)=VEB1(I,IGR)+VEB2(I,IGR)
GRAD2(I,IGR)=GRAD1(I,IGR)
VEA3(I,IGR)=VEA2(I,IGR)
VEB3(I,IGR)=VEB2(I,IGR)
180 CONTINUE
185 CONTINUE
IF(IMPX.GE.2) WRITE (6,620) M,AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,
1 BEBE,ALP,BET,EVAL,F,DELS,N,BEBG,BEBH,BGBG,BGBH,BHBH,AEBE,
2 AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH
* COMPUTE THE CONVERGENCE HISTOGRAM.
IF((IMPH.GE.1).AND.(M.LE.MMAXX)) THEN
JPFLUX=LCMGID(IPFLUX,'MODE')
KPFLUX=LCMGIL(JPFLUX,IMOD)
CALL FLDXCO(KPFLUX,LL4,NUN,EVECT(1,NGRP,IMOD),.TRUE.,ERR(M))
ALPH(M)=REAL(ALP)
BETA(M)=REAL(BET)
ENDIF
ENDIF
*
IF(M.EQ.1) TEST=DELS
IF((M.GT.5).AND.(DELS.GT.TEST)) CALL XABORT('FLDMON: CONVERGENCE'
1 //' FAILURE.')
IF(M.GE.MAXOUT) THEN
WRITE (6,'(/46H FLDMON: ***WARNING*** MAXIMUM NUMBER OF ITERA,
1 17HTIONS IS REACHED.)')
GO TO 190
ENDIF
IF(MOD(M,36).EQ.0) THEN
ISTART=M+1
NNADI=NNADI+1
IF(IMPX.GE.1) WRITE (6,700) NNADI
ENDIF
GO TO 50
*----
* DIRECT SOLUTION EDITION
*----
190 Z1=1.0D0/EVAL
IF(IMPX.GE.1) WRITE (6,630) 1.0D0/EVAL
IF(IMPX.EQ.1) WRITE (6,640) M
IF(IMPX.EQ.3) THEN
DO 210 IGR=1,NGRP
WRITE (6,660) 'DIRECT',IGR,(EVECT(I,IGR,IMOD),I=1,LL4)
210 CONTINUE
ENDIF
IF(IMPH.EQ.1) THEN
JPFLUX=LCMGID(IPFLUX,'MODE')
KPFLUX=LCMGIL(JPFLUX,IMOD)
CALL LCMLEN(KPFLUX,'REF',ILONG,ITYLCM)
IF(ILONG.EQ.0) THEN
WRITE(6,'(44H FLDMON: STORE A REFERENCE THERMAL HARMONIC.)')
CALL LCMPUT(KPFLUX,'REF',NUN,2,EVECT(1,NGRP,IMOD))
ENDIF
ELSE IF(IMPH.GE.2) THEN
JPFLUX=LCMGID(IPFLUX,'MODE')
KPFLUX=LCMGIL(JPFLUX,IMOD)
IGRAPH=0
215 IGRAPH=IGRAPH+1
WRITE (TEXT12,'(5HHISTO,I3)') IGRAPH
CALL LCMLEN (KPFLUX,TEXT12,ILENG,ITYLCM)
IF(ILENG.EQ.0) THEN
MM=MIN(M,MMAXX)
CALL LCMSIX (KPFLUX,TEXT12,1)
CALL LCMPTC (KPFLUX,'HTITLE',72,TITR)
CALL LCMPUT (KPFLUX,'ALPHA',MM,2,ALPH)
CALL LCMPUT (KPFLUX,'BETA',MM,2,BETA)
CALL LCMPUT (KPFLUX,'ERROR',MM,2,ERR)
CALL LCMPUT (KPFLUX,'IMPH',1,1,IMPH)
CALL LCMSIX (KPFLUX,' ',2)
ELSE
GO TO 215
ENDIF
ENDIF
*----
* PRECONDITIONED POWER METHOD FOR THE ADJOINT PROBLEM
*----
CALL KDRCPU(TK1)
EVAL=1.0D0
VVV=0.0
ISTART=1
NNADI=NADI
TEST=0.0
IF(IMPX.GE.1) WRITE (6,600) NADI,'ADJOINT'
IF(IMPX.GE.2) WRITE (6,610)
CALL FLDDEF(NUN,IPTRK,IPSYS,LL4,ITY,NGRP,IMOD,LMOD,EVECT,ADECT,
1 ADECT(1,1,IMOD),2,VEA1,VEB1)
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
M=0
220 M=M+1
*----
* EIGENVALUE CALCULATION
*----
CALL KDRCPU(TK1)
AEBE=0.0D0
BEBE=0.0D0
DO 235 IGR=1,NGRP
DO 230 I=1,LL4
AEBE=AEBE+VEA1(I,IGR)*VEB1(I,IGR)
BEBE=BEBE+VEB1(I,IGR)**2
230 CONTINUE
235 CONTINUE
EVAL=AEBE/BEBE
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
*----
* DIRECTION EVALUATION
*----
DO 280 IGR=NGRP,1,-1
CALL KDRCPU(TK1)
DO 240 I=1,LL4
GRAD1(I,IGR)=REAL(EVAL)*VEB1(I,IGR)-VEA1(I,IGR)
240 CONTINUE
DO 270 JGR=NGRP,IGR+1,-1
WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
IF(ILONG.EQ.0) GO TO 270
IF(ITY.EQ.13) THEN
CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,JGR),AGAR)
DO 250 I=1,LL4
GRAD1(I,IGR)=GRAD1(I,IGR)+AGAR(I)
250 CONTINUE
ELSE
CALL LCMGPD(IPSYS,TEXT12,AGARM_PTR)
CALL C_F_POINTER(AGARM_PTR,AGARM,(/ ILONG /))
DO 260 I=1,ILONG
GRAD1(I,IGR)=GRAD1(I,IGR)+AGARM(I)*GRAD1(I,JGR)
260 CONTINUE
ENDIF
270 CONTINUE
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
*
CALL KDRCPU(TK1)
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,IGR),NNADI)
CALL KDRCPU(TK2)
TKT=TKT+(TK2-TK1)
280 CONTINUE
*----
* PERFORM THERMAL (UP-SCATTERING) ITERATIONS
*----
IF(MAXINR.GT.1) THEN
CALL FLDTHR(IPTRK,IPSYS,IPFLUX,.TRUE.,LL4,ITY,NUN,NGRP,ICL1,
1 ICL2,IMPX,NNADI,0,MAXINR,EPSINR,ITER,TKT,TKB,GRAD1)
ENDIF
*----
* DISPLACEMENT EVALUATION
*----
CALL KDRCPU(TK1)
F=0.0D0
DELS=ABS(REAL((EVAL-VVV)/EVAL))
VVV=REAL(EVAL)
*----
* EVALUATION OF THE TWO ACCELERATION PARAMETERS ALP AND BET
*----
ALP=1.0D0
BET=0.0D0
N=0
AEAE=0.0D0
AEAG=0.0D0
AEAH=0.0D0
AGAG=0.0D0
AGAH=0.0D0
AHAH=0.0D0
BEBG=0.0D0
BEBH=0.0D0
BGBG=0.0D0
BGBH=0.0D0
BHBH=0.0D0
AEBG=0.0D0
AEBH=0.0D0
AGBE=0.0D0
AGBG=0.0D0
AGBH=0.0D0
AHBE=0.0D0
AHBG=0.0D0
AHBH=0.0D0
CALL FLDDEF(NUN,IPTRK,IPSYS,LL4,ITY,NGRP,IMOD,LMOD,EVECT,ADECT,
1 GRAD1(1,1),2,VEA2,VEB2)
IF(1+MOD(M-ISTART,ICL1+ICL2).GT.ICL1) THEN
DO 295 IGR=1,NGRP
DO 290 I=1,LL4
* COMPUTE (A ,A )
AEAE=AEAE+VEA1(I,IGR)**2
AEAG=AEAG+VEA1(I,IGR)*VEA2(I,IGR)
AEAH=AEAH+VEA1(I,IGR)*VEA3(I,IGR)
AGAG=AGAG+VEA2(I,IGR)**2
AGAH=AGAH+VEA2(I,IGR)*VEA3(I,IGR)
AHAH=AHAH+VEA3(I,IGR)**2
* COMPUTE (B ,B )
BEBG=BEBG+VEB1(I,IGR)*VEB2(I,IGR)
BEBH=BEBH+VEB1(I,IGR)*VEB3(I,IGR)
BGBG=BGBG+VEB2(I,IGR)**2
BGBH=BGBH+VEB2(I,IGR)*VEB3(I,IGR)
BHBH=BHBH+VEB3(I,IGR)**2
* COMPUTE (A ,B )
AEBG=AEBG+VEA1(I,IGR)*VEB2(I,IGR)
AEBH=AEBH+VEA1(I,IGR)*VEB3(I,IGR)
AGBE=AGBE+VEA2(I,IGR)*VEB1(I,IGR)
AGBG=AGBG+VEA2(I,IGR)*VEB2(I,IGR)
AGBH=AGBH+VEA2(I,IGR)*VEB3(I,IGR)
AHBE=AHBE+VEA3(I,IGR)*VEB1(I,IGR)
AHBG=AHBG+VEA3(I,IGR)*VEB2(I,IGR)
AHBH=AHBH+VEA3(I,IGR)*VEB3(I,IGR)
290 CONTINUE
295 CONTINUE
*
300 N=N+1
IF(N.GT.10) GO TO 305
* COMPUTE X(M+1)
X=BEBE+ALP*ALP*BGBG+BET*BET*BHBH+2.0D0*(ALP*BEBG+BET*BEBH
1 +ALP*BET*BGBH)
DXDA=2.0D0*(BEBG+ALP*BGBG+BET*BGBH)
DXDB=2.0D0*(BEBH+ALP*BGBH+BET*BHBH)
* COMPUTE Y(M+1)
Y=AEAE+ALP*ALP*AGAG+BET*BET*AHAH+2.0D0*(ALP*AEAG+BET*AEAH
1 +ALP*BET*AGAH)
DYDA=2.0D0*(AEAG+ALP*AGAG+BET*AGAH)
DYDB=2.0D0*(AEAH+ALP*AGAH+BET*AHAH)
* COMPUTE Z(M+1)
Z=AEBE+ALP*ALP*AGBG+BET*BET*AHBH+ALP*(AEBG+AGBE)
1 +BET*(AEBH+AHBE)+ALP*BET*(AGBH+AHBG)
DZDA=AEBG+AGBE+2.0D0*ALP*AGBG+BET*(AGBH+AHBG)
DZDB=AEBH+AHBE+ALP*(AGBH+AHBG)+2.0D0*BET*AHBH
* COMPUTE F(M+1)
F=X*Y-Z*Z
D2F(1,1)=2.0D0*(BGBG*Y+DXDA*DYDA+X*AGAG-DZDA**2-2.0D0*Z*AGBG)
D2F(1,2)=2.0D0*BGBH*Y+DXDA*DYDB+DXDB*DYDA+2.0D0*X*AGAH
1 -2.0D0*DZDA*DZDB-2.0D0*Z*(AGBH+AHBG)
D2F(2,2)=2.0D0*(BHBH*Y+DXDB*DYDB+X*AHAH-DZDB**2-2.0D0*Z*AHBH)
D2F(2,1)=D2F(1,2)
D2F(1,3)=DXDA*Y+X*DYDA-2.0D0*Z*DZDA
D2F(2,3)=DXDB*Y+X*DYDB-2.0D0*Z*DZDB
* SOLUTION OF A LINEAR SYSTEM.
CALL ALSBD(2,1,D2F,IER,2)
IF(IER.NE.0) GO TO 305
ALP=ALP-D2F(1,3)
BET=BET-D2F(2,3)
IF(ALP.GT.100.0) GO TO 305
IF((ABS(D2F(1,3)).LE.1.0D-4).AND.(ABS(D2F(2,3)).LE.1.0D-4))
1 GO TO 310
GO TO 300
*
* alternative algorithm in case of Newton-Raphton failure
305 IF(IMPX.GT.0) WRITE(6,'(/30H FLDMON: FAILURE OF THE NEWTON,
1 55H-RAPHTON ALGORIHTHM FOR COMPUTING THE OVERRELAXATION PA,
2 12HRAMETERS(2).)')
IAMIN=999
IBMIN=999
FMIN=HUGE(FMIN)
DO IA=1,SIZE(ALP_TAB)
ALP=ALP_TAB(IA)
DO IB=1,SIZE(BET_TAB)
BET=BET_TAB(IB)
* COMPUTE X
X=BEBE+ALP*ALP*BGBG+BET*BET*BHBH+2.0D0*(ALP*BEBG+BET*BEBH
1 +ALP*BET*BGBH)
* COMPUTE Y
Y=AEAE+ALP*ALP*AGAG+BET*BET*AHAH+2.0D0*(ALP*AEAG+BET*AEAH
1 +ALP*BET*AGAH)
* COMPUTE Z
Z=AEBE+ALP*ALP*AGBG+BET*BET*AHBH+ALP*(AEBG+AGBE)
1 +BET*(AEBH+AHBE)+ALP*BET*(AGBH+AHBG)
* COMPUTE F
F=X*Y-Z*Z
IF(F.LT.FMIN) THEN
IAMIN=IA
IBMIN=IB
FMIN=F
ENDIF
ENDDO
ENDDO
ALP=ALP_TAB(IAMIN)
BET=BET_TAB(IBMIN)
310 BET=BET/ALP
*
IF((ALP.LT.1.0D0).AND.(ALP.GT.0.0D0)) THEN
ALP=1.0D0
BET=0.0D0
ELSE IF(ALP.LE.0.0D0) THEN
ISTART=M+1
ALP=1.0D0
BET=0.0D0
ENDIF
DO 325 IGR=1,NGRP
DO 320 I=1,LL4
GRAD1(I,IGR)=REAL(ALP)*(GRAD1(I,IGR)+REAL(BET)*GRAD2(I,IGR))
VEA2(I,IGR)=REAL(ALP)*(VEA2(I,IGR)+REAL(BET)*VEA3(I,IGR))
VEB2(I,IGR)=REAL(ALP)*(VEB2(I,IGR)+REAL(BET)*VEB3(I,IGR))
320 CONTINUE
325 CONTINUE
ENDIF
CALL KDRCPU(TK2)
TKB=TKB+(TK2-TK1)
*
LOGTES=(M.LT.ICL1).OR.(MOD(M-ISTART,ICL1+ICL2).EQ.ICL1-1)
IF(LOGTES.AND.(DELS.LE.EPS1))THEN
DELT=0.0
DO 340 IGR=1,NGRP
DELN=0.0
DELD=0.0
DO 330 I=1,LL4
ADECT(I,IGR,IMOD)=ADECT(I,IGR,IMOD)+GRAD1(I,IGR)
VEA1(I,IGR)=VEA1(I,IGR)+VEA2(I,IGR)
VEB1(I,IGR)=VEB1(I,IGR)+VEB2(I,IGR)
GRAD2(I,IGR)=GRAD1(I,IGR)
VEA3(I,IGR)=VEA2(I,IGR)
VEB3(I,IGR)=VEB2(I,IGR)
DELN=MAX(DELN,ABS(VEB2(I,IGR)))
DELD=MAX(DELD,ABS(VEB1(I,IGR)))
330 CONTINUE
IF(DELD.NE.0.0) DELT=MAX(DELT,DELN/DELD)
340 CONTINUE
IF(IMPX.GE.2) WRITE (6,615) M,AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,
1 BEBE,ALP,BET,EVAL,F,DELS,DELT,N,BEBG,BEBH,BGBG,BGBH,BHBH,AEBE,
2 AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH
IF(DELT.LE.EPS2) GO TO 360
ELSE
DO 355 IGR=1,NGRP
DO 350 I=1,LL4
ADECT(I,IGR,IMOD)=ADECT(I,IGR,IMOD)+GRAD1(I,IGR)
VEA1(I,IGR)=VEA1(I,IGR)+VEA2(I,IGR)
VEB1(I,IGR)=VEB1(I,IGR)+VEB2(I,IGR)
GRAD2(I,IGR)=GRAD1(I,IGR)
VEA3(I,IGR)=VEA2(I,IGR)
VEB3(I,IGR)=VEB2(I,IGR)
350 CONTINUE
355 CONTINUE
IF(IMPX.GE.2) WRITE (6,620) M,AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,
1 BEBE,ALP,BET,EVAL,F,DELS,N,BEBG,BEBH,BGBG,BGBH,BHBH,AEBE,
2 AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH
ENDIF
IF(M.EQ.1) TEST=DELS
IF((M.GT.5).AND.(DELS.GT.TEST)) CALL XABORT('FLDMON: CONVERGENCE'
1 //' FAILURE.')
IF(M.GE.MAXOUT) THEN
WRITE (6,'(/46H FLDMON: ***WARNING*** MAXIMUM NUMBER OF ITERA,
1 17HTIONS IS REACHED.)')
GO TO 360
ENDIF
IF(MOD(M,36).EQ.0) THEN
ISTART=M+1
NNADI=NNADI+1
IF(IMPX.GE.1) WRITE (6,700) NNADI
ENDIF
GO TO 220
*----
* ADJOINT SOLUTION EDITION
*----
360 IF(IMPX.GE.1) WRITE (6,630) 1.0D0/EVAL
IF(IMPX.EQ.1) WRITE (6,640) M
IF(IMPX.EQ.3) THEN
DO 380 IGR=1,NGRP
WRITE (6,660) 'ADJOINT',IGR,(ADECT(I,IGR,IMOD),I=1,LL4)
380 CONTINUE
ENDIF
*
IF(ABS(Z1-1.0D0/EVAL).GT.1.0E-4) CALL XABORT('FLDMON: FAILURE O'
1 //'F HARMONIC COMPUTATION.')
FKEFF(IMOD)=REAL(0.5D0*(Z1+1.0D0/EVAL))
390 CONTINUE
IF(IMPX.GE.1) THEN
WRITE (6,650) TKT,TKB,TKT+TKB
WRITE (6,670) (FKEFF(IMOD),IMOD=1,LMOD)
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(AGAR,GRAD1,GRAD2,VEA1,VEA2,VEA3,VEB1,VEB2,VEB3)
RETURN
*
600 FORMAT(1H1/50H FLDMON: ITERATIVE PROCEDURE BASED ON PRECONDITION,
1 17HED POWER METHOD (,I2,37H ADI ITERATIONS PER OUTER ITERATION)./
2 9X,A7,10H EQUATION.)
610 FORMAT(//5X,17HBILINEAR PRODUCTS,48X,5HALPHA,3X,4HBETA,3X,
1 12HEIGENVALUE..,12X,8HACCURACY,11(1H.),2X,1HN)
615 FORMAT(1X,I3,1P,7E9.1,0P,2F8.3,E14.6,3E10.2,I4/(4X,1P,7E9.1))
620 FORMAT(1X,I3,1P,7E9.1,0P,2F8.3,E14.6,2E10.2,10X,I4/(4X,1P,7E9.1))
630 FORMAT(/42H FLDMON: EFFECTIVE MULTIPLICATION FACTOR =,1P,D17.10/)
640 FORMAT(/23H FLDMON: CONVERGENCE IN,I5,12H ITERATIONS.)
650 FORMAT(/53H FLDMON: CPU TIME USED TO SOLVE THE TRIANGULAR LINEAR,
1 10H SYSTEMS =,F10.3/23X,34HTO COMPUTE THE BILINEAR PRODUCTS =,
2 F10.3,20X,16HTOTAL CPU TIME =,F10.3)
660 FORMAT(//9H FLDMON: ,A7,37H EIGENVECTOR CORRESPONDING TO THE GRO,
1 2HUP,I4//(5X,1P,8E14.5))
670 FORMAT(//21H FLDMON: EIGENVALUES:/(5X,1P,E17.10))
700 FORMAT(/53H FLDMON: INCREASING THE NUMBER OF INNER ITERATIONS TO,
1 I3,36H ADI ITERATIONS PER OUTER ITERATION./)
END
|