1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
|
*DECK FLDDRV
SUBROUTINE FLDDRV (CMODUL,IPTRK,IPSYS,REC,NEL,LL4,ITY,NUN,NBMIX,
1 MAT,VOL,IDL,NGRP,TITR,LREL,IPFLUX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of the neutron flux as an eigenvalue problem.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* CMODUL name of the assembly door ('BIVAC' or 'TRIVAC').
* IPTRK L_TRACK pointer to the tracking information.
* IPSYS L_SYSTEM pointer to system matrices.
* REC flux recovery flag:
* .true.: recover the existing solution as initial estimate;
* .false.: use a uniform initial estimate.
* NEL total number of finite elements.
* LL4 order of the system matrices.
* ITY type of solution (2: classical Trivac; 3: Thomas-Raviart).
* NUN total number of unknowns per group.
* NBMIX number of material mixtures.
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* IDL position of the average flux component associated with each
* volume.
* NGRP number of energy groups.
* TITR title.
* LREL flag set to .true. if a RHS estimate of the solution is
* available.
* IPFLUX L_FLUX pointer to the solution.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
CHARACTER CMODUL*12,TITR*72
TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
INTEGER NEL,LL4,ITY,NUN,NBMIX,MAT(NEL),IDL(NEL),NGRP
REAL VOL(NEL)
LOGICAL REC,LREL
*----
* GENERIC INTERFACE
*----
INTERFACE
FUNCTION FLDMX_TEMPLATE(F,N,IBLSZ,ITER,IPTRK,IPSYS,IPFLUX)
1 RESULT(X)
USE GANLIB
INTEGER, INTENT(IN) :: N,IBLSZ,ITER
COMPLEX(KIND=8), DIMENSION(N,IBLSZ), INTENT(IN) :: F
COMPLEX(KIND=8), DIMENSION(N,IBLSZ) :: X
TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
END FUNCTION FLDMX_TEMPLATE
END INTERFACE
PROCEDURE(FLDMX_TEMPLATE) :: FLDBMX,FLDTMX
*----
* LOCAL VARIABLES
*----
PARAMETER (NSTATE=40,IOUT=6)
CHARACTER TEXT4*4,HSMG*131
DOUBLE PRECISION DFLOTT
LOGICAL ADJ,RAND
INTEGER ISTATE(NSTATE)
REAL EPSCON(5),RELAX
REAL, DIMENSION(:), ALLOCATABLE :: FKEFFV
REAL, DIMENSION(:,:), ALLOCATABLE :: EVECT
REAL, DIMENSION(:,:,:), ALLOCATABLE :: EV,AD
COMPLEX, DIMENSION(:), ALLOCATABLE :: CFKEFFV
COMPLEX, DIMENSION(:,:,:), ALLOCATABLE :: CEV
TYPE(C_PTR) JPFLUX,KPFLUX,MPFLUX,NPFLUX
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(EVECT(NUN,NGRP))
*
*-----------------------------------------------------------------------
* INFORMATION RECOVERED FROM L_SYSTEM AT IPSYS:
* 'A 1 1' : SYSTEM MATRIX RELATED TO FAST LEAKAGE AND REMOVAL.
* 'A 2 2' : SYSTEM MATRIX RELATED TO THERMAL LEAKAGE AND REMOVAL.
* 'A 1 2' : SYSTEM MATRIX RELATED TO UP-SCATTERING.
* 'A 2 1' : SYSTEM MATRIX RELATED TO DOWN-SCATTERING.
* 'B 1 1' : SYSTEM MATRIX RELATED TO FAST FISSION.
* 'B 1 2' : SYSTEM MATRIX RELATED TO THERMAL FISSION.
*-----------------------------------------------------------------------
*
*----
* READ THE INPUT DATA
*----
IMPX=1
IMPH=0
RAND=.FALSE.
IF(REC) THEN
* RECOVER EXISTING OPTIONS.
CALL LCMGET(IPFLUX,'STATE-VECTOR',ISTATE)
ADJ=MOD(ISTATE(3)/10,10).EQ.1
LMOD=ISTATE(4)
ICL1=ISTATE(8)
ICL2=ISTATE(9)
IREBAL=ISTATE(10)
MAXINR=ISTATE(11)
MAXOUT=ISTATE(12)
NADI=ISTATE(13)
IBLSZ=ISTATE(14)
NSTARD=ISTATE(15)
CALL LCMGET(IPFLUX,'EPS-CONVERGE',EPSCON)
EPSINR=EPSCON(1)
EPSOUT=EPSCON(2)
EPSMSR=EPSCON(4)
RELAX=EPSCON(5)
ELSE
* DEFAULT OPTIONS.
ADJ=.FALSE.
LMOD=0
ICL1=3
ICL2=3
MAXINR=0
IREBAL=0
MAXOUT=200
IBLSZ=0
NSTARD=0
CALL LCMGET(IPTRK,'STATE-VECTOR',ISTATE)
NADI=ISTATE(33)
EPSINR=1.0E-5
EPSOUT=1.0E-4
EPSMSR=1.0E-6
RELAX=1.0
ENDIF
*
10 CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.EQ.10) GO TO 50
20 IF(INDIC.NE.3) CALL XABORT('FLDDRV: CHARACTER DATA EXPECTED.')
IF(TEXT4.EQ.'EDIT') THEN
CALL REDGET(INDIC,IMPX,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(3).')
ELSE IF((TEXT4.EQ.'VAR1').OR.(TEXT4.EQ.'ACCE')) THEN
CALL REDGET(INDIC,ICL1,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(1).')
CALL REDGET(INDIC,ICL2,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(2).')
ELSE IF(TEXT4.EQ.'IRAM') THEN
CALL REDGET(INDIC,IBLSZ,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(3).')
CALL REDGET(INDIC,LMOD,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(4).')
NADI=MAX(NADI,5)
CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.1) THEN
IF((ITY.EQ.2).OR.(ITY.EQ.3).OR.(ITY.EQ.11).OR.(ITY.EQ.13))
1 NADI=MAX(NADI,20)
GO TO 20
ENDIF
IF(CMODUL.EQ.'BIVAC') CALL XABORT('FLDDRV: NSTARD OPTION NOT A'
1 //'VAILABLE WITH BIVAC.')
NSTARD=NITMA
NADI=MAX(NADI,20)
ELSE IF(TEXT4.EQ.'EPSG') THEN
CALL REDGET(INDIC,NITMA,EPSMSR,TEXT4,DFLOTT)
IF(INDIC.NE.2) CALL XABORT('FLDDRV: REAL DATA EXPECTED.')
ELSE IF(TEXT4.EQ.'ADI') THEN
CALL REDGET(INDIC,NADI,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(5).')
ELSE IF(TEXT4.EQ.'ADJ') THEN
ADJ=.TRUE.
ELSE IF(TEXT4.EQ.'EXTE') THEN
30 CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.EQ.1) THEN
MAXOUT=NITMA
ELSE IF(INDIC.EQ.2) THEN
EPSOUT=FLOTT
ELSE
GO TO 20
ENDIF
GO TO 30
ELSE IF(TEXT4.EQ.'THER') THEN
IREBAL=1
40 CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
IF(INDIC.EQ.1) THEN
MAXINR=NITMA
ELSE IF(INDIC.EQ.2) THEN
EPSINR=FLOTT
ELSE
GO TO 20
ENDIF
GO TO 40
ELSE IF(TEXT4.EQ.'MONI') THEN
CALL REDGET(INDIC,LMOD,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(6).')
IF(LMOD.LE.0) CALL XABORT('FLDDRV: INVALID VALUE OF LMOD.')
ELSE IF(TEXT4.EQ.'RAND') THEN
RAND=.TRUE.
ELSE IF(TEXT4.EQ.'HIST') THEN
CALL REDGET(INDIC,IMPH,FLOTT,TEXT4,DFLOTT)
IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(7).')
ELSE IF(TEXT4.EQ.'RELA') THEN
IF(.NOT.LREL) CALL XABORT('FLDDRV: ENTRY L_FLUX IN MODIFICATIO'
1 //'N MODE EXPECTED FOR RELAX KEYWORD.')
CALL REDGET(INDIC,NITMA,RELAX,TEXT4,DFLOTT)
IF(INDIC.NE.2) CALL XABORT('FLDDRV: REAL DATA EXPECTED.')
ELSE IF(TEXT4.EQ.';') THEN
GO TO 50
ELSE
CALL XABORT('FLDDRV: '//TEXT4//' IS AN INVALID KEY WORD.')
ENDIF
GO TO 10
*----
* FLUXES INITIALIZATION
*----
50 IF(REC.AND.(IMPH.EQ.0)) THEN
CALL LCMLEN(IPFLUX,'FLUX',ILONG,ITYLCM)
IF(ILONG.NE.NGRP) CALL XABORT('FLDDRV: UNABLE TO RECOVER ''FLU'
1 //'X''.')
JPFLUX=LCMGID(IPFLUX,'FLUX')
DO 60 IGR=1,NGRP
CALL LCMGDL(JPFLUX,IGR,EVECT(1,IGR))
60 CONTINUE
ELSE
* INITIAL ESTIMATE OF THE DIRECT FLUXES.
EVECT(:NUN,:NGRP)=1.0
ENDIF
*
DNORM=1.0
ANORM=1.0
IF((LMOD.GT.0).AND.(IBLSZ.EQ.0)) THEN
* BI-ORTHOGONAL HARMONIC CALCULATION.
IF(CMODUL.NE.'TRIVAC') CALL XABORT('FLDDRV: HARMONIC CALCULAT'
1 //'ION IS ONLY POSSIBLE WITH TRIVAC.')
ALLOCATE(FKEFFV(LMOD),EV(NUN,NGRP,LMOD),AD(NUN,NGRP,LMOD))
CALL FLDMON(IPTRK,IPSYS,IPFLUX,LL4,ITY,NUN,NGRP,LMOD,ICL1,
1 ICL2,IMPX,IMPH,TITR,EPSOUT,NADI,MAXOUT,MAXINR,EPSINR,RAND,
2 FKEFFV,EV,AD)
JPFLUX=LCMLID(IPFLUX,'MODE',LMOD)
DO 90 IMOD=1,LMOD
* CREATE A DIRECTORY AT IMOD-TH LIST ELEMENT.
KPFLUX=LCMDIL(JPFLUX,IMOD)
* PUT NODES IN DIRECTORY KPFLUX.
CALL LCMPUT(KPFLUX,'K-EFFECTIVE',1,2,FKEFFV(IMOD))
CALL LCMPUT(KPFLUX,'K-INFINITY',1,2,FKEFFV(IMOD))
MPFLUX=LCMLID(KPFLUX,'FLUX',NGRP)
NPFLUX=LCMLID(KPFLUX,'AFLUX',NGRP)
* STORE FLUX AND ADJOINT FLUX IN THE IGR-TH COMPONENT OF EACH
* LIST.
DO 70 IGR=1,NGRP
CALL FLDTRI(IPTRK,NEL,NUN,EV(1,IGR,IMOD),MAT,VOL,IDL)
CALL FLDTRI(IPTRK,NEL,NUN,AD(1,IGR,IMOD),MAT,VOL,IDL)
70 CONTINUE
IF(IMOD.EQ.1) THEN
CALL FLDNOR(IPSYS,NUN,NGRP,NEL,NBMIX,MAT,VOL,IDL,'DIRE',
1 EV(1,1,IMOD),DNORM)
CALL FLDNOR(IPSYS,NUN,NGRP,NEL,NBMIX,MAT,VOL,IDL,'ADJO',
1 AD(1,1,IMOD),ANORM)
ELSE
EV(:NUN,:NGRP,IMOD)=EV(:NUN,:NGRP,IMOD)*DNORM
AD(:NUN,:NGRP,IMOD)=AD(:NUN,:NGRP,IMOD)*DNORM
ENDIF
IF(LREL) THEN
CALL FLDREL(RELAX,MPFLUX,NGRP,NUN,EV(1,1,IMOD))
CALL FLDREL(RELAX,NPFLUX,NGRP,NUN,AD(1,1,IMOD))
ENDIF
DO 80 IGR=1,NGRP
CALL LCMPDL(MPFLUX,IGR,NUN,2,EV(1,IGR,IMOD))
CALL LCMPDL(NPFLUX,IGR,NUN,2,AD(1,IGR,IMOD))
80 CONTINUE
90 CONTINUE
CALL LCMPUT(IPFLUX,'K-EFFECTIVE',1,2,FKEFFV(1))
DEALLOCATE(AD,EV,FKEFFV)
IF(IMPX.GT.1) THEN
* TEST ORTHOGONALITY OF EIGENVECTORS.
CALL FLDORT(IPSYS,IPFLUX,NUN,NGRP,LMOD)
ENDIF
ELSE IF(IBLSZ.GT.0) THEN
* IMPLICIT RESTARTED ARNOLDI METHOD (IRAM).
IF(LMOD.EQ.0) CALL XABORT('FLDDRV: LMOD>0 EXPECTED WITH IRAM.')
ALLOCATE(CFKEFFV(LMOD),CEV(NUN,NGRP,LMOD))
EPSCON(1)=EPSINR
EPSCON(4)=EPSMSR
CALL LCMPUT(IPFLUX,'EPS-CONVERGE',5,2,EPSCON)
ISTATE(:NSTATE)=0
ISTATE(3)=1
ISTATE(8)=ICL1
ISTATE(9)=ICL2
ISTATE(10)=IREBAL
ISTATE(11)=MAXINR
ISTATE(13)=NADI
ISTATE(15)=NSTARD
ISTATE(40)=IMPX
*
* DIRECT CALCULATION
CALL LCMPUT(IPFLUX,'STATE-VECTOR',NSTATE,1,ISTATE)
IF(CMODUL.EQ.'BIVAC') THEN
CALL FLDARN(FLDBMX,IPTRK,IPSYS,IPFLUX,LL4,NUN,NGRP,LMOD,
1 IBLSZ,.FALSE.,IMPX,EPSOUT,MAXOUT,CEV,CFKEFFV)
ELSE IF(CMODUL.EQ.'TRIVAC') THEN
CALL FLDARN(FLDTMX,IPTRK,IPSYS,IPFLUX,LL4,NUN,NGRP,LMOD,
1 IBLSZ,.FALSE.,IMPX,EPSOUT,MAXOUT,CEV,CFKEFFV)
ENDIF
JPFLUX=LCMLID(IPFLUX,'MODE',LMOD)
DO 120 IMOD=1,LMOD
IF(AIMAG(CFKEFFV(IMOD)).NE.0.0) THEN
WRITE(HSMG,'(8H FLDDRV:,I4,27H-TH DIRECT MODE IS COMPLEX.)')
1 IMOD
WRITE(IOUT,'(A)') HSMG
IF(IMOD.EQ.1)CALL XABORT('FLDDRV: COMPLEX FUNDAMENTAL MODE.')
GO TO 120
ENDIF
* CREATE A DIRECTORY AT IMOD-TH LIST ELEMENT.
KPFLUX=LCMDIL(JPFLUX,IMOD)
* PUT NODES IN DIRECTORY KPFLUX.
EVECT(:NUN,:NGRP)=REAL(CEV(:NUN,:NGRP,IMOD))
CALL LCMPUT(KPFLUX,'K-EFFECTIVE',1,2,REAL(CFKEFFV(IMOD)))
CALL LCMPUT(KPFLUX,'K-INFINITY',1,2,REAL(CFKEFFV(IMOD)))
* STORE FLUX IN THE IGR-TH COMPONENT OF EACH LIST.
DO 100 IGR=1,NGRP
IF(CMODUL.EQ.'BIVAC') THEN
CALL FLDBIV(IPTRK,NEL,NUN,EVECT(1,IGR),MAT,VOL,IDL)
ELSE IF(CMODUL.EQ.'TRIVAC') THEN
CALL FLDTRI(IPTRK,NEL,NUN,EVECT(1,IGR),MAT,VOL,IDL)
ENDIF
100 CONTINUE
IF(IMOD.EQ.1) THEN
CALL FLDNOR(IPSYS,NUN,NGRP,NEL,NBMIX,MAT,VOL,IDL,'DIRE',
1 EVECT(1,1),DNORM)
ELSE
EVECT(:NUN,:NGRP)=EVECT(:NUN,:NGRP)*DNORM
ENDIF
MPFLUX=LCMLID(KPFLUX,'FLUX',NGRP)
IF(LREL) CALL FLDREL(RELAX,MPFLUX,NGRP,NUN,EVECT(1,1))
DO 110 IGR=1,NGRP
CALL LCMPDL(MPFLUX,IGR,NUN,2,EVECT(1,IGR))
110 CONTINUE
120 CONTINUE
CALL LCMPUT(IPFLUX,'K-EFFECTIVE',1,2,REAL(CFKEFFV(1)))
IF(.NOT.ADJ) GO TO 160
*
* ADJOINT CALCULATION
IF(CMODUL.NE.'TRIVAC') CALL XABORT('FLDDRV: ADJOINT CALCULATI'
1 //'ON IS ONLY POSSIBLE WITH TRIVAC.')
ISTATE(3)=10
CALL LCMPUT(IPFLUX,'STATE-VECTOR',NSTATE,1,ISTATE)
CALL FLDARN(FLDTMX,IPTRK,IPSYS,IPFLUX,LL4,NUN,NGRP,LMOD,IBLSZ,
1 .TRUE.,IMPX,EPSOUT,MAXOUT,CEV,CFKEFFV)
JPFLUX=LCMLID(IPFLUX,'MODE',LMOD)
DO 150 IMOD=1,LMOD
IF(AIMAG(CFKEFFV(IMOD)).NE.0.0) THEN
WRITE(HSMG,'(8H FLDDRV:,I4,28H-TH ADJOINT MODE IS COMPLEX.)')
1 IMOD
WRITE(IOUT,'(A)') HSMG
IF(IMOD.EQ.1)CALL XABORT('FLDDRV: COMPLEX FUNDAMENTAL MODE.')
GO TO 150
ENDIF
* CREATE A DIRECTORY AT IMOD-TH LIST ELEMENT.
KPFLUX=LCMDIL(JPFLUX,IMOD)
* PUT NODES IN DIRECTORY KPFLUX.
EVECT(:NUN,:NGRP)=REAL(CEV(:NUN,:NGRP,IMOD))
CALL LCMPUT(KPFLUX,'AK-EFFECTIVE',1,2,REAL(CFKEFFV(IMOD)))
CALL LCMPUT(KPFLUX,'AK-INFINITY',1,2,REAL(CFKEFFV(IMOD)))
* STORE FLUX IN THE IGR-TH COMPONENT OF EACH LIST.
DO 130 IGR=1,NGRP
CALL FLDTRI(IPTRK,NEL,NUN,EVECT(1,IGR),MAT,VOL,IDL)
130 CONTINUE
IF(IMOD.EQ.1) THEN
CALL FLDNOR(IPSYS,NUN,NGRP,NEL,NBMIX,MAT,VOL,IDL,'ADJO',
1 EVECT(1,1),ANORM)
ELSE
EVECT(:NUN,:NGRP)=EVECT(:NUN,:NGRP)*ANORM
ENDIF
NPFLUX=LCMLID(KPFLUX,'AFLUX',NGRP)
IF(LREL) CALL FLDREL(RELAX,NPFLUX,NGRP,NUN,EVECT(1,1))
DO 140 IGR=1,NGRP
CALL LCMPDL(NPFLUX,IGR,NUN,2,EVECT(1,IGR))
140 CONTINUE
150 CONTINUE
160 DEALLOCATE(CEV,CFKEFFV)
IF(ADJ.AND.(IMPX.GT.1)) THEN
* TEST ORTHOGONALITY OF EIGENVECTORS.
CALL FLDORT(IPSYS,IPFLUX,NUN,NGRP,LMOD)
ENDIF
ELSE
* DIRECT NEUTRON FLUX CALCULATION WITH SVAT.
IF(CMODUL.EQ.'BIVAC') THEN
CALL FLDSMB(IPTRK,IPSYS,IPFLUX,LL4,ITY,NUN,NGRP,ICL1,ICL2,
1 IMPX,IMPH,TITR,EPSOUT,MAXOUT,MAXINR,EPSINR,EVECT,FKEFF)
DO 210 IGR=1,NGRP
CALL FLDBIV(IPTRK,NEL,NUN,EVECT(1,IGR),MAT,VOL,IDL)
210 CONTINUE
ELSE IF(CMODUL.EQ.'TRIVAC') THEN
CALL FLDDIR(IPTRK,IPSYS,IPFLUX,LL4,ITY,NUN,NGRP,ICL1,ICL2,
1 IMPX,IMPH,TITR,EPSOUT,NADI,MAXOUT,MAXINR,EPSINR,EVECT,FKEFF)
DO 220 IGR=1,NGRP
CALL FLDTRI(IPTRK,NEL,NUN,EVECT(1,IGR),MAT,VOL,IDL)
220 CONTINUE
ENDIF
CALL FLDNOR(IPSYS,NUN,NGRP,NEL,NBMIX,MAT,VOL,IDL,'DIRE',
1 EVECT(1,1),DNORM)
CALL LCMPUT(IPFLUX,'K-EFFECTIVE',1,2,FKEFF)
CALL LCMPUT(IPFLUX,'K-INFINITY',1,2,FKEFF)
JPFLUX=LCMLID(IPFLUX,'FLUX',NGRP)
IF(LREL) CALL FLDREL(RELAX,JPFLUX,NGRP,NUN,EVECT(1,1))
DO 230 IGR=1,NGRP
CALL LCMPDL(JPFLUX,IGR,NUN,2,EVECT(1,IGR))
230 CONTINUE
IF(.NOT.ADJ) GO TO 280
*
IF(CMODUL.NE.'TRIVAC') CALL XABORT('FLDDRV: ADJOINT CALCULATI'
1 //'ON IS ONLY POSSIBLE WITH TRIVAC.')
* ADJOINT FLUX INITIALIZATION.
IF(REC.AND.(IMPH.EQ.0)) THEN
CALL LCMLEN(IPFLUX,'AFLUX',ILONG,ITYLCM)
IF(ILONG.NE.NGRP) CALL XABORT('FLDDRV: UNABLE TO RECOVER AF'
1 //'LUX.')
JPFLUX=LCMGID(IPFLUX,'AFLUX')
DO 240 IGR=1,NGRP
CALL LCMGDL(JPFLUX,IGR,EVECT(1,IGR))
240 CONTINUE
ELSE
* INITIAL ESTIMATE OF THE ADJOINT FLUXES.
EVECT(:NUN,:NGRP)=1.0
ENDIF
*
CALL FLDADJ(IPTRK,IPSYS,IPFLUX,LL4,ITY,NUN,NGRP,ICL1,ICL2,IMPX,
1 EPSOUT,NADI,MAXOUT,MAXINR,EPSINR,EVECT,FKEFF)
CALL LCMPUT(IPFLUX,'AK-EFFECTIVE',1,2,FKEFF)
CALL LCMPUT(IPFLUX,'AK-INFINITY',1,2,FKEFF)
JPFLUX=LCMLID(IPFLUX,'AFLUX',NGRP)
DO 260 IGR=1,NGRP
CALL FLDTRI(IPTRK,NEL,NUN,EVECT(1,IGR),MAT,VOL,IDL)
260 CONTINUE
CALL FLDNOR(IPSYS,NUN,NGRP,NEL,NBMIX,MAT,VOL,IDL,'ADJO',
1 EVECT(1,1),ANORM)
IF(LREL) CALL FLDREL(RELAX,JPFLUX,NGRP,NUN,EVECT(1,1))
DO 270 IGR=1,NGRP
CALL LCMPDL(JPFLUX,IGR,NUN,2,EVECT(1,IGR))
270 CONTINUE
ENDIF
*----
* SET STATE-VECTOR AND EPS-CONVERGE
*----
280 ISTATE(:NSTATE)=0
ISTATE(1)=NGRP
ISTATE(2)=NUN
ISTATE(3)=1
IF(ADJ) ISTATE(3)=11
ISTATE(4)=LMOD
ISTATE(5)=0
ISTATE(6)=2
ISTATE(7)=0
ISTATE(8)=ICL1
ISTATE(9)=ICL2
ISTATE(10)=IREBAL
ISTATE(11)=MAXINR
ISTATE(12)=MAXOUT
ISTATE(13)=NADI
ISTATE(14)=IBLSZ
ISTATE(15)=NSTARD
ISTATE(17)=NBMIX
CALL LCMPUT(IPFLUX,'STATE-VECTOR',NSTATE,1,ISTATE)
EPSCON(1)=EPSINR
EPSCON(2)=EPSOUT
EPSCON(3)=EPSOUT
EPSCON(4)=EPSMSR
EPSCON(5)=RELAX
CALL LCMPUT(IPFLUX,'EPS-CONVERGE',5,2,EPSCON)
CALL LCMPUT(IPFLUX,'KEYFLX',NEL,1,IDL)
*----
* PRINT STATE-VECTOR
*----
IF(IMPX.GT.0) THEN
WRITE (IOUT,300) IMPX,(ISTATE(I),I=1,9)
WRITE (IOUT,310) (ISTATE(I),I=10,15),ISTATE(17)
WRITE (IOUT,320) (EPSCON(I),I=1,5)
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(EVECT)
RETURN
300 FORMAT(/8H OPTIONS/8H -------/
1 7H IMPX ,I9,29H (0=NO PRINT/1=SHORT/2=MORE)/
2 7H NGRO ,I9,27H (NUMBER OF ENERGY GROUPS)/
3 7H NUN ,I9,39H (NUMBER OF UNKNOWNS PER ENERGY GROUP)/
4 7H IADJ ,I9,43H (1=DIRECT KEFF OR SOURCE/10=ADJOINT KEFF/,
5 31H100=DIRECT GPT/100=ADJOINT GPT)/
6 7H LMOD ,I9,23H (NUMBER OF HARMONICS)/
7 7H NGPT ,I9,27H (NUMBER OF GPT EQUATIONS)/
8 7H ITYPE ,I9,46H (TYPE OF SOLUTION: 0=FIXED SOURCE/1=FIXED SO,
9 57HURCE EIGENVALUE/2=TYPE K/3=TYPE K BUCK/4=TYPE B/5=TYPE L)/
1 7H ILEAK ,I9,25H (TYPE OF LEAKAGE MODEL)/
2 7H ICL1 ,I9,46H (NUMBER OF FREE ITERATIONS PER ACCELERATION ,
3 6HCYCLE)/
4 7H ICL2 ,I9,46H (NUMBER OF ACCELERATED ITERATIONS PER ACCELE,
5 14H RATION CYCLE))
310 FORMAT(7H IREBAL,I9,34H (0/1: THERMAL ITERATIONS OFF/ON)/
1 7H MAXINR,I9,40H (MAXIMUM NUMBER OF THERMAL ITERATIONS)/
2 7H MAXOUT,I9,38H (MAXIMUM NUMBER OF OUTER ITERATIONS)/
3 7H NADI ,I9,46H (INITIAL NUMBER OF ADI ITERATIONS IN TRIVAC)/
4 7H IBLSZ ,I9,46H (BLOCK SIZE OF THE ARNOLDI HESSENBERG MATRIX,
5 11H WITH IRAM)/
6 7H NSTARD,I9,46H (NUMBER OF RESTARTING ITERATIONS WITH GMRES ,
7 51HFOR SOLVING THE ADI-PRECONDITIONNED LINEAR SYSTEMS)/
8 7H NBMIX ,I9,31H (NUMBER OF MATERIAL MIXTURES))
320 FORMAT(7H EPSINR,1P,E9.2,29H (THERMAL ITERATION EPSILON)/
1 7H EPSOUT,1P,E9.2,32H (OUTER ITERATION KEFF EPSILON)/
2 7H EPSOUT,1P,E9.2,32H (OUTER ITERATION FLUX EPSILON)/
3 7H EPSMSR,1P,E9.2,33H (INNER ITERATION GMRES EPSILON)/
4 7H RELAX ,1P,E9.2,21H (RELAXATION FACTOR)/)
END
|