summaryrefslogtreecommitdiff
path: root/Trivac/src/FLDDRV.f
blob: affadc83424374201c9c8ea2b58d385306d6f82d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
*DECK FLDDRV
      SUBROUTINE FLDDRV (CMODUL,IPTRK,IPSYS,REC,NEL,LL4,ITY,NUN,NBMIX,
     1 MAT,VOL,IDL,NGRP,TITR,LREL,IPFLUX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of the neutron flux as an eigenvalue problem.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* CMODUL  name of the assembly door ('BIVAC' or 'TRIVAC').
* IPTRK   L_TRACK pointer to the tracking information.
* IPSYS   L_SYSTEM pointer to system matrices.
* REC     flux recovery flag:
*         .true.: recover the existing solution as initial estimate;
*         .false.: use a uniform initial estimate.
* NEL     total number of finite elements.
* LL4     order of the system matrices.
* ITY     type of solution (2: classical Trivac; 3: Thomas-Raviart).
* NUN     total number of unknowns per group.
* NBMIX   number of material mixtures.
* MAT     index-number of the mixture type assigned to each volume.
* VOL     volumes.
* IDL     position of the average flux component associated with each
*         volume.
* NGRP    number of energy groups.
* TITR    title.
* LREL    flag set to .true. if a RHS estimate of the solution is
*         available.
* IPFLUX  L_FLUX pointer to the solution.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      CHARACTER CMODUL*12,TITR*72
      TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
      INTEGER NEL,LL4,ITY,NUN,NBMIX,MAT(NEL),IDL(NEL),NGRP
      REAL VOL(NEL)
      LOGICAL REC,LREL
*----
*  GENERIC INTERFACE
*----
      INTERFACE
        FUNCTION FLDMX_TEMPLATE(F,N,IBLSZ,ITER,IPTRK,IPSYS,IPFLUX)
     1  RESULT(X)
          USE GANLIB
          INTEGER, INTENT(IN) :: N,IBLSZ,ITER
          COMPLEX(KIND=8), DIMENSION(N,IBLSZ), INTENT(IN) :: F
          COMPLEX(KIND=8), DIMENSION(N,IBLSZ) :: X
          TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
        END FUNCTION FLDMX_TEMPLATE
      END INTERFACE
      PROCEDURE(FLDMX_TEMPLATE) :: FLDBMX,FLDTMX
*----
*  LOCAL VARIABLES
*----
      PARAMETER (NSTATE=40,IOUT=6)
      CHARACTER TEXT4*4,HSMG*131
      DOUBLE PRECISION DFLOTT
      LOGICAL ADJ,RAND
      INTEGER ISTATE(NSTATE)
      REAL EPSCON(5),RELAX
      REAL, DIMENSION(:), ALLOCATABLE :: FKEFFV
      REAL, DIMENSION(:,:), ALLOCATABLE :: EVECT
      REAL, DIMENSION(:,:,:), ALLOCATABLE :: EV,AD
      COMPLEX, DIMENSION(:), ALLOCATABLE :: CFKEFFV
      COMPLEX, DIMENSION(:,:,:), ALLOCATABLE :: CEV
      TYPE(C_PTR) JPFLUX,KPFLUX,MPFLUX,NPFLUX
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(EVECT(NUN,NGRP))
*
*-----------------------------------------------------------------------
* INFORMATION RECOVERED FROM L_SYSTEM AT IPSYS:
*  'A  1  1'  : SYSTEM MATRIX RELATED TO FAST LEAKAGE AND REMOVAL.
*  'A  2  2'  : SYSTEM MATRIX RELATED TO THERMAL LEAKAGE AND REMOVAL.
*  'A  1  2'  : SYSTEM MATRIX RELATED TO UP-SCATTERING.
*  'A  2  1'  : SYSTEM MATRIX RELATED TO DOWN-SCATTERING.
*  'B  1  1'  : SYSTEM MATRIX RELATED TO FAST FISSION.
*  'B  1  2'  : SYSTEM MATRIX RELATED TO THERMAL FISSION.
*-----------------------------------------------------------------------
*
*----
*  READ THE INPUT DATA
*----
      IMPX=1
      IMPH=0
      RAND=.FALSE.
      IF(REC) THEN
*        RECOVER EXISTING OPTIONS.
         CALL LCMGET(IPFLUX,'STATE-VECTOR',ISTATE)
         ADJ=MOD(ISTATE(3)/10,10).EQ.1
         LMOD=ISTATE(4)
         ICL1=ISTATE(8)
         ICL2=ISTATE(9)
         IREBAL=ISTATE(10)
         MAXINR=ISTATE(11)
         MAXOUT=ISTATE(12)
         NADI=ISTATE(13)
         IBLSZ=ISTATE(14)
         NSTARD=ISTATE(15)
         CALL LCMGET(IPFLUX,'EPS-CONVERGE',EPSCON)
         EPSINR=EPSCON(1)
         EPSOUT=EPSCON(2)
         EPSMSR=EPSCON(4)
         RELAX=EPSCON(5)
      ELSE
*        DEFAULT OPTIONS.
         ADJ=.FALSE.
         LMOD=0
         ICL1=3
         ICL2=3
         MAXINR=0
         IREBAL=0
         MAXOUT=200
         IBLSZ=0
         NSTARD=0
         CALL LCMGET(IPTRK,'STATE-VECTOR',ISTATE)
         NADI=ISTATE(33)
         EPSINR=1.0E-5
         EPSOUT=1.0E-4
         EPSMSR=1.0E-6
         RELAX=1.0
      ENDIF
*
   10 CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
      IF(INDIC.EQ.10) GO TO 50
   20 IF(INDIC.NE.3) CALL XABORT('FLDDRV: CHARACTER DATA EXPECTED.')
      IF(TEXT4.EQ.'EDIT') THEN
        CALL REDGET(INDIC,IMPX,FLOTT,TEXT4,DFLOTT)
        IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(3).')
      ELSE IF((TEXT4.EQ.'VAR1').OR.(TEXT4.EQ.'ACCE')) THEN
        CALL REDGET(INDIC,ICL1,FLOTT,TEXT4,DFLOTT)
        IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(1).')
        CALL REDGET(INDIC,ICL2,FLOTT,TEXT4,DFLOTT)
        IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(2).')
      ELSE IF(TEXT4.EQ.'IRAM') THEN
        CALL REDGET(INDIC,IBLSZ,FLOTT,TEXT4,DFLOTT)
        IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(3).')
        CALL REDGET(INDIC,LMOD,FLOTT,TEXT4,DFLOTT)
        IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(4).')
        NADI=MAX(NADI,5)
        CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
        IF(INDIC.NE.1) THEN
          IF((ITY.EQ.2).OR.(ITY.EQ.3).OR.(ITY.EQ.11).OR.(ITY.EQ.13))
     1    NADI=MAX(NADI,20)
          GO TO 20
        ENDIF
        IF(CMODUL.EQ.'BIVAC') CALL XABORT('FLDDRV: NSTARD OPTION NOT A'
     1  //'VAILABLE WITH BIVAC.')
        NSTARD=NITMA
        NADI=MAX(NADI,20)
      ELSE IF(TEXT4.EQ.'EPSG') THEN
        CALL REDGET(INDIC,NITMA,EPSMSR,TEXT4,DFLOTT)
        IF(INDIC.NE.2) CALL XABORT('FLDDRV: REAL DATA EXPECTED.')
      ELSE IF(TEXT4.EQ.'ADI') THEN
        CALL REDGET(INDIC,NADI,FLOTT,TEXT4,DFLOTT)
        IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(5).')
      ELSE IF(TEXT4.EQ.'ADJ') THEN
        ADJ=.TRUE.
      ELSE IF(TEXT4.EQ.'EXTE') THEN
   30   CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
        IF(INDIC.EQ.1) THEN
          MAXOUT=NITMA
        ELSE IF(INDIC.EQ.2) THEN
          EPSOUT=FLOTT
        ELSE
          GO TO 20
        ENDIF
        GO TO 30
      ELSE IF(TEXT4.EQ.'THER') THEN
        IREBAL=1
   40   CALL REDGET(INDIC,NITMA,FLOTT,TEXT4,DFLOTT)
        IF(INDIC.EQ.1) THEN
          MAXINR=NITMA
        ELSE IF(INDIC.EQ.2) THEN
          EPSINR=FLOTT
        ELSE
          GO TO 20
        ENDIF
        GO TO 40
      ELSE IF(TEXT4.EQ.'MONI') THEN
        CALL REDGET(INDIC,LMOD,FLOTT,TEXT4,DFLOTT)
        IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(6).')
        IF(LMOD.LE.0) CALL XABORT('FLDDRV: INVALID VALUE OF LMOD.')
      ELSE IF(TEXT4.EQ.'RAND') THEN
        RAND=.TRUE.
      ELSE IF(TEXT4.EQ.'HIST') THEN
        CALL REDGET(INDIC,IMPH,FLOTT,TEXT4,DFLOTT)
        IF(INDIC.NE.1) CALL XABORT('FLDDRV: INTEGER DATA EXPECTED(7).')
      ELSE IF(TEXT4.EQ.'RELA') THEN
        IF(.NOT.LREL) CALL XABORT('FLDDRV: ENTRY L_FLUX IN MODIFICATIO'
     1  //'N MODE EXPECTED FOR RELAX KEYWORD.')
        CALL REDGET(INDIC,NITMA,RELAX,TEXT4,DFLOTT)
        IF(INDIC.NE.2) CALL XABORT('FLDDRV: REAL DATA EXPECTED.')
      ELSE IF(TEXT4.EQ.';') THEN
        GO TO 50
      ELSE
        CALL XABORT('FLDDRV: '//TEXT4//' IS AN INVALID KEY WORD.')
      ENDIF
      GO TO 10
*----
*  FLUXES INITIALIZATION
*----
   50 IF(REC.AND.(IMPH.EQ.0)) THEN
         CALL LCMLEN(IPFLUX,'FLUX',ILONG,ITYLCM)
         IF(ILONG.NE.NGRP) CALL XABORT('FLDDRV: UNABLE TO RECOVER ''FLU'
     1   //'X''.')
         JPFLUX=LCMGID(IPFLUX,'FLUX')
         DO 60 IGR=1,NGRP
         CALL LCMGDL(JPFLUX,IGR,EVECT(1,IGR))
   60    CONTINUE
      ELSE
*        INITIAL ESTIMATE OF THE DIRECT FLUXES.
         EVECT(:NUN,:NGRP)=1.0
      ENDIF
*
      DNORM=1.0
      ANORM=1.0
      IF((LMOD.GT.0).AND.(IBLSZ.EQ.0)) THEN
*        BI-ORTHOGONAL HARMONIC CALCULATION.
         IF(CMODUL.NE.'TRIVAC') CALL XABORT('FLDDRV: HARMONIC CALCULAT'
     1   //'ION IS ONLY POSSIBLE WITH TRIVAC.')
         ALLOCATE(FKEFFV(LMOD),EV(NUN,NGRP,LMOD),AD(NUN,NGRP,LMOD))
         CALL FLDMON(IPTRK,IPSYS,IPFLUX,LL4,ITY,NUN,NGRP,LMOD,ICL1,
     1   ICL2,IMPX,IMPH,TITR,EPSOUT,NADI,MAXOUT,MAXINR,EPSINR,RAND,
     2   FKEFFV,EV,AD)
         JPFLUX=LCMLID(IPFLUX,'MODE',LMOD)
         DO 90 IMOD=1,LMOD
*        CREATE A DIRECTORY AT IMOD-TH LIST ELEMENT.
         KPFLUX=LCMDIL(JPFLUX,IMOD)
*        PUT NODES IN DIRECTORY KPFLUX.
         CALL LCMPUT(KPFLUX,'K-EFFECTIVE',1,2,FKEFFV(IMOD))
         CALL LCMPUT(KPFLUX,'K-INFINITY',1,2,FKEFFV(IMOD))
         MPFLUX=LCMLID(KPFLUX,'FLUX',NGRP)
         NPFLUX=LCMLID(KPFLUX,'AFLUX',NGRP)
*        STORE FLUX AND ADJOINT FLUX IN THE IGR-TH COMPONENT OF EACH
*        LIST.
         DO 70 IGR=1,NGRP
         CALL FLDTRI(IPTRK,NEL,NUN,EV(1,IGR,IMOD),MAT,VOL,IDL)
         CALL FLDTRI(IPTRK,NEL,NUN,AD(1,IGR,IMOD),MAT,VOL,IDL)
   70    CONTINUE
         IF(IMOD.EQ.1) THEN
           CALL FLDNOR(IPSYS,NUN,NGRP,NEL,NBMIX,MAT,VOL,IDL,'DIRE',
     1     EV(1,1,IMOD),DNORM)
           CALL FLDNOR(IPSYS,NUN,NGRP,NEL,NBMIX,MAT,VOL,IDL,'ADJO',
     1     AD(1,1,IMOD),ANORM)
         ELSE
           EV(:NUN,:NGRP,IMOD)=EV(:NUN,:NGRP,IMOD)*DNORM
           AD(:NUN,:NGRP,IMOD)=AD(:NUN,:NGRP,IMOD)*DNORM
         ENDIF
         IF(LREL) THEN
           CALL FLDREL(RELAX,MPFLUX,NGRP,NUN,EV(1,1,IMOD)) 
           CALL FLDREL(RELAX,NPFLUX,NGRP,NUN,AD(1,1,IMOD)) 
         ENDIF
         DO 80 IGR=1,NGRP
         CALL LCMPDL(MPFLUX,IGR,NUN,2,EV(1,IGR,IMOD))
         CALL LCMPDL(NPFLUX,IGR,NUN,2,AD(1,IGR,IMOD))
   80    CONTINUE
   90    CONTINUE
         CALL LCMPUT(IPFLUX,'K-EFFECTIVE',1,2,FKEFFV(1))
         DEALLOCATE(AD,EV,FKEFFV)
         IF(IMPX.GT.1) THEN
*          TEST ORTHOGONALITY OF EIGENVECTORS.
           CALL FLDORT(IPSYS,IPFLUX,NUN,NGRP,LMOD)
         ENDIF
      ELSE IF(IBLSZ.GT.0) THEN
*        IMPLICIT RESTARTED ARNOLDI METHOD (IRAM).
         IF(LMOD.EQ.0) CALL XABORT('FLDDRV: LMOD>0 EXPECTED WITH IRAM.')
         ALLOCATE(CFKEFFV(LMOD),CEV(NUN,NGRP,LMOD))
         EPSCON(1)=EPSINR
         EPSCON(4)=EPSMSR
         CALL LCMPUT(IPFLUX,'EPS-CONVERGE',5,2,EPSCON)
         ISTATE(:NSTATE)=0
         ISTATE(3)=1
         ISTATE(8)=ICL1
         ISTATE(9)=ICL2
         ISTATE(10)=IREBAL
         ISTATE(11)=MAXINR
         ISTATE(13)=NADI
         ISTATE(15)=NSTARD
         ISTATE(40)=IMPX
*
*        DIRECT CALCULATION
         CALL LCMPUT(IPFLUX,'STATE-VECTOR',NSTATE,1,ISTATE)
         IF(CMODUL.EQ.'BIVAC') THEN
           CALL FLDARN(FLDBMX,IPTRK,IPSYS,IPFLUX,LL4,NUN,NGRP,LMOD,
     1     IBLSZ,.FALSE.,IMPX,EPSOUT,MAXOUT,CEV,CFKEFFV)
         ELSE IF(CMODUL.EQ.'TRIVAC') THEN
           CALL FLDARN(FLDTMX,IPTRK,IPSYS,IPFLUX,LL4,NUN,NGRP,LMOD,
     1     IBLSZ,.FALSE.,IMPX,EPSOUT,MAXOUT,CEV,CFKEFFV)
         ENDIF
         JPFLUX=LCMLID(IPFLUX,'MODE',LMOD)
         DO 120 IMOD=1,LMOD
         IF(AIMAG(CFKEFFV(IMOD)).NE.0.0) THEN
           WRITE(HSMG,'(8H FLDDRV:,I4,27H-TH DIRECT MODE IS COMPLEX.)')
     1     IMOD
           WRITE(IOUT,'(A)') HSMG
           IF(IMOD.EQ.1)CALL XABORT('FLDDRV: COMPLEX FUNDAMENTAL MODE.')
           GO TO 120
         ENDIF
*        CREATE A DIRECTORY AT IMOD-TH LIST ELEMENT.
         KPFLUX=LCMDIL(JPFLUX,IMOD)
*        PUT NODES IN DIRECTORY KPFLUX.
         EVECT(:NUN,:NGRP)=REAL(CEV(:NUN,:NGRP,IMOD))
         CALL LCMPUT(KPFLUX,'K-EFFECTIVE',1,2,REAL(CFKEFFV(IMOD)))
         CALL LCMPUT(KPFLUX,'K-INFINITY',1,2,REAL(CFKEFFV(IMOD)))
*        STORE FLUX IN THE IGR-TH COMPONENT OF EACH LIST.
         DO 100 IGR=1,NGRP
         IF(CMODUL.EQ.'BIVAC') THEN
           CALL FLDBIV(IPTRK,NEL,NUN,EVECT(1,IGR),MAT,VOL,IDL)
         ELSE IF(CMODUL.EQ.'TRIVAC') THEN
           CALL FLDTRI(IPTRK,NEL,NUN,EVECT(1,IGR),MAT,VOL,IDL)
         ENDIF
  100    CONTINUE
         IF(IMOD.EQ.1) THEN
           CALL FLDNOR(IPSYS,NUN,NGRP,NEL,NBMIX,MAT,VOL,IDL,'DIRE',
     1     EVECT(1,1),DNORM)
         ELSE
           EVECT(:NUN,:NGRP)=EVECT(:NUN,:NGRP)*DNORM
         ENDIF
         MPFLUX=LCMLID(KPFLUX,'FLUX',NGRP)
         IF(LREL) CALL FLDREL(RELAX,MPFLUX,NGRP,NUN,EVECT(1,1)) 
         DO 110 IGR=1,NGRP
         CALL LCMPDL(MPFLUX,IGR,NUN,2,EVECT(1,IGR))
  110    CONTINUE
  120    CONTINUE
         CALL LCMPUT(IPFLUX,'K-EFFECTIVE',1,2,REAL(CFKEFFV(1)))
         IF(.NOT.ADJ) GO TO 160
*
*        ADJOINT CALCULATION
         IF(CMODUL.NE.'TRIVAC') CALL XABORT('FLDDRV: ADJOINT CALCULATI'
     1   //'ON IS ONLY POSSIBLE WITH TRIVAC.')
         ISTATE(3)=10
         CALL LCMPUT(IPFLUX,'STATE-VECTOR',NSTATE,1,ISTATE)
         CALL FLDARN(FLDTMX,IPTRK,IPSYS,IPFLUX,LL4,NUN,NGRP,LMOD,IBLSZ,
     1   .TRUE.,IMPX,EPSOUT,MAXOUT,CEV,CFKEFFV)
         JPFLUX=LCMLID(IPFLUX,'MODE',LMOD)
         DO 150 IMOD=1,LMOD
         IF(AIMAG(CFKEFFV(IMOD)).NE.0.0) THEN
           WRITE(HSMG,'(8H FLDDRV:,I4,28H-TH ADJOINT MODE IS COMPLEX.)')
     1     IMOD
           WRITE(IOUT,'(A)') HSMG
           IF(IMOD.EQ.1)CALL XABORT('FLDDRV: COMPLEX FUNDAMENTAL MODE.')
           GO TO 150
         ENDIF
*        CREATE A DIRECTORY AT IMOD-TH LIST ELEMENT.
         KPFLUX=LCMDIL(JPFLUX,IMOD)
*        PUT NODES IN DIRECTORY KPFLUX.
         EVECT(:NUN,:NGRP)=REAL(CEV(:NUN,:NGRP,IMOD))
         CALL LCMPUT(KPFLUX,'AK-EFFECTIVE',1,2,REAL(CFKEFFV(IMOD)))
         CALL LCMPUT(KPFLUX,'AK-INFINITY',1,2,REAL(CFKEFFV(IMOD)))
*        STORE FLUX IN THE IGR-TH COMPONENT OF EACH LIST.
         DO 130 IGR=1,NGRP
           CALL FLDTRI(IPTRK,NEL,NUN,EVECT(1,IGR),MAT,VOL,IDL)
  130    CONTINUE
         IF(IMOD.EQ.1) THEN
           CALL FLDNOR(IPSYS,NUN,NGRP,NEL,NBMIX,MAT,VOL,IDL,'ADJO',
     1     EVECT(1,1),ANORM)
         ELSE
           EVECT(:NUN,:NGRP)=EVECT(:NUN,:NGRP)*ANORM
         ENDIF
         NPFLUX=LCMLID(KPFLUX,'AFLUX',NGRP)
         IF(LREL) CALL FLDREL(RELAX,NPFLUX,NGRP,NUN,EVECT(1,1)) 
         DO 140 IGR=1,NGRP
         CALL LCMPDL(NPFLUX,IGR,NUN,2,EVECT(1,IGR))
  140    CONTINUE
  150    CONTINUE
  160    DEALLOCATE(CEV,CFKEFFV)
         IF(ADJ.AND.(IMPX.GT.1)) THEN
*          TEST ORTHOGONALITY OF EIGENVECTORS.
           CALL FLDORT(IPSYS,IPFLUX,NUN,NGRP,LMOD)
         ENDIF
      ELSE
*        DIRECT NEUTRON FLUX CALCULATION WITH SVAT.
         IF(CMODUL.EQ.'BIVAC') THEN
           CALL FLDSMB(IPTRK,IPSYS,IPFLUX,LL4,ITY,NUN,NGRP,ICL1,ICL2,
     1     IMPX,IMPH,TITR,EPSOUT,MAXOUT,MAXINR,EPSINR,EVECT,FKEFF)
           DO 210 IGR=1,NGRP
           CALL FLDBIV(IPTRK,NEL,NUN,EVECT(1,IGR),MAT,VOL,IDL)
  210      CONTINUE
         ELSE IF(CMODUL.EQ.'TRIVAC') THEN
           CALL FLDDIR(IPTRK,IPSYS,IPFLUX,LL4,ITY,NUN,NGRP,ICL1,ICL2,
     1     IMPX,IMPH,TITR,EPSOUT,NADI,MAXOUT,MAXINR,EPSINR,EVECT,FKEFF)
           DO 220 IGR=1,NGRP
           CALL FLDTRI(IPTRK,NEL,NUN,EVECT(1,IGR),MAT,VOL,IDL)
  220      CONTINUE
         ENDIF
         CALL FLDNOR(IPSYS,NUN,NGRP,NEL,NBMIX,MAT,VOL,IDL,'DIRE',
     1   EVECT(1,1),DNORM)
         CALL LCMPUT(IPFLUX,'K-EFFECTIVE',1,2,FKEFF)
         CALL LCMPUT(IPFLUX,'K-INFINITY',1,2,FKEFF)
         JPFLUX=LCMLID(IPFLUX,'FLUX',NGRP)
         IF(LREL) CALL FLDREL(RELAX,JPFLUX,NGRP,NUN,EVECT(1,1))        
         DO 230 IGR=1,NGRP
         CALL LCMPDL(JPFLUX,IGR,NUN,2,EVECT(1,IGR))
  230    CONTINUE
         IF(.NOT.ADJ) GO TO 280
*
         IF(CMODUL.NE.'TRIVAC') CALL XABORT('FLDDRV: ADJOINT CALCULATI'
     1   //'ON IS ONLY POSSIBLE WITH TRIVAC.')
*        ADJOINT FLUX INITIALIZATION.
         IF(REC.AND.(IMPH.EQ.0)) THEN
           CALL LCMLEN(IPFLUX,'AFLUX',ILONG,ITYLCM)
           IF(ILONG.NE.NGRP) CALL XABORT('FLDDRV: UNABLE TO RECOVER AF'
     1     //'LUX.')
           JPFLUX=LCMGID(IPFLUX,'AFLUX')
           DO 240 IGR=1,NGRP
           CALL LCMGDL(JPFLUX,IGR,EVECT(1,IGR))
  240      CONTINUE
         ELSE
*          INITIAL ESTIMATE OF THE ADJOINT FLUXES.
           EVECT(:NUN,:NGRP)=1.0
         ENDIF
*
         CALL FLDADJ(IPTRK,IPSYS,IPFLUX,LL4,ITY,NUN,NGRP,ICL1,ICL2,IMPX,
     1   EPSOUT,NADI,MAXOUT,MAXINR,EPSINR,EVECT,FKEFF)
         CALL LCMPUT(IPFLUX,'AK-EFFECTIVE',1,2,FKEFF)
         CALL LCMPUT(IPFLUX,'AK-INFINITY',1,2,FKEFF)
         JPFLUX=LCMLID(IPFLUX,'AFLUX',NGRP)
         DO 260 IGR=1,NGRP
         CALL FLDTRI(IPTRK,NEL,NUN,EVECT(1,IGR),MAT,VOL,IDL)
  260    CONTINUE
         CALL FLDNOR(IPSYS,NUN,NGRP,NEL,NBMIX,MAT,VOL,IDL,'ADJO',
     1   EVECT(1,1),ANORM)
         IF(LREL) CALL FLDREL(RELAX,JPFLUX,NGRP,NUN,EVECT(1,1))        
         DO 270 IGR=1,NGRP
         CALL LCMPDL(JPFLUX,IGR,NUN,2,EVECT(1,IGR))
  270    CONTINUE
      ENDIF
*----
* SET STATE-VECTOR AND EPS-CONVERGE
*----
  280 ISTATE(:NSTATE)=0
      ISTATE(1)=NGRP
      ISTATE(2)=NUN
      ISTATE(3)=1
      IF(ADJ) ISTATE(3)=11
      ISTATE(4)=LMOD
      ISTATE(5)=0
      ISTATE(6)=2
      ISTATE(7)=0
      ISTATE(8)=ICL1
      ISTATE(9)=ICL2
      ISTATE(10)=IREBAL
      ISTATE(11)=MAXINR
      ISTATE(12)=MAXOUT
      ISTATE(13)=NADI
      ISTATE(14)=IBLSZ
      ISTATE(15)=NSTARD
      ISTATE(17)=NBMIX
      CALL LCMPUT(IPFLUX,'STATE-VECTOR',NSTATE,1,ISTATE)
      EPSCON(1)=EPSINR
      EPSCON(2)=EPSOUT
      EPSCON(3)=EPSOUT
      EPSCON(4)=EPSMSR
      EPSCON(5)=RELAX
      CALL LCMPUT(IPFLUX,'EPS-CONVERGE',5,2,EPSCON)
      CALL LCMPUT(IPFLUX,'KEYFLX',NEL,1,IDL)
*----
* PRINT STATE-VECTOR
*----
      IF(IMPX.GT.0) THEN
         WRITE (IOUT,300) IMPX,(ISTATE(I),I=1,9)
         WRITE (IOUT,310) (ISTATE(I),I=10,15),ISTATE(17)
         WRITE (IOUT,320) (EPSCON(I),I=1,5)
      ENDIF
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(EVECT)
      RETURN
  300 FORMAT(/8H OPTIONS/8H -------/
     1 7H IMPX  ,I9,29H  (0=NO PRINT/1=SHORT/2=MORE)/
     2 7H NGRO  ,I9,27H  (NUMBER OF ENERGY GROUPS)/
     3 7H NUN   ,I9,39H  (NUMBER OF UNKNOWNS PER ENERGY GROUP)/
     4 7H IADJ  ,I9,43H  (1=DIRECT KEFF OR SOURCE/10=ADJOINT KEFF/,
     5 31H100=DIRECT GPT/100=ADJOINT GPT)/
     6 7H LMOD  ,I9,23H  (NUMBER OF HARMONICS)/
     7 7H NGPT  ,I9,27H  (NUMBER OF GPT EQUATIONS)/
     8 7H ITYPE ,I9,46H  (TYPE OF SOLUTION: 0=FIXED SOURCE/1=FIXED SO,
     9 57HURCE EIGENVALUE/2=TYPE K/3=TYPE K BUCK/4=TYPE B/5=TYPE L)/
     1 7H ILEAK ,I9,25H  (TYPE OF LEAKAGE MODEL)/
     2 7H ICL1  ,I9,46H  (NUMBER OF FREE ITERATIONS PER ACCELERATION ,
     3 6HCYCLE)/
     4 7H ICL2  ,I9,46H  (NUMBER OF ACCELERATED ITERATIONS PER ACCELE,
     5 14H RATION CYCLE))
  310 FORMAT(7H IREBAL,I9,34H  (0/1: THERMAL ITERATIONS OFF/ON)/
     1 7H MAXINR,I9,40H  (MAXIMUM NUMBER OF THERMAL ITERATIONS)/
     2 7H MAXOUT,I9,38H  (MAXIMUM NUMBER OF OUTER ITERATIONS)/
     3 7H NADI  ,I9,46H  (INITIAL NUMBER OF ADI ITERATIONS IN TRIVAC)/
     4 7H IBLSZ ,I9,46H  (BLOCK SIZE OF THE ARNOLDI HESSENBERG MATRIX,
     5 11H WITH IRAM)/
     6 7H NSTARD,I9,46H  (NUMBER OF RESTARTING ITERATIONS WITH GMRES ,
     7 51HFOR SOLVING THE ADI-PRECONDITIONNED LINEAR SYSTEMS)/
     8 7H NBMIX ,I9,31H  (NUMBER OF MATERIAL MIXTURES))
  320 FORMAT(7H EPSINR,1P,E9.2,29H  (THERMAL ITERATION EPSILON)/
     1 7H EPSOUT,1P,E9.2,32H  (OUTER ITERATION KEFF EPSILON)/
     2 7H EPSOUT,1P,E9.2,32H  (OUTER ITERATION FLUX EPSILON)/
     3 7H EPSMSR,1P,E9.2,33H  (INNER ITERATION GMRES EPSILON)/
     4 7H RELAX ,1P,E9.2,21H  (RELAXATION FACTOR)/)
      END