1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
*DECK FLDBH2
SUBROUTINE FLDBH2 (ISPLH,NEL,NUN,NELEM,EVECT,VOL,IDL,KN,QFR,RH,RT)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Calculation of the averaged flux with a linear Lagrangian finite
* element or mesh corner finite difference method in hexagonal geometry.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* ISPLH type of hexagonal mesh-splitting: =1 for complete hexagons;
* >1 for triangular mesh-splitting.
* NEL number of hexagons.
* NUN number of unknowns per energy group.
* NELEM number of finite elements (hexagons or triangles) excluding
* the virtual elements.
* EVECT variational coefficients of the flux. The information is
* contained in position EVECT(1) to EVECT(LL4) where LL4 is the
* order of the system matrices.
* VOL volume of each hexagon.
* IDL position of the average flux component associated with each
* hexagon.
* KN element-ordered unknown list. The dimension of KN is equal
* to (LC+1)*NELEM where LC=6 (hexagons) or 3 (triangles).
* QFR element-ordered albedo information. The dimension of QFR is
* equal to (LC+1)*NELEM.
* RH unit matrix
* RT unit matrix
*
*Parameters: output
* EVECT averaged fluxes. The information is contained in positions
* EVECT(IDL(I)).
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER ISPLH,NEL,NUN,NELEM,IDL(NEL),KN(*)
REAL EVECT(NUN),VOL(NEL),QFR(*),RH(6,6),RT(3,3)
*----
* LOCAL VARIABLES
*----
REAL T(6)
*----
* COMPUTE THE LINEAR PRODUCT VECTOR T
*----
IF(ISPLH.EQ.1) THEN
* HEXAGONAL BASIS.
LC=6
DO 15 I=1,6
T(I)=0.0
DO 10 J=1,6
T(I)=T(I)+RH(I,J)
10 CONTINUE
15 CONTINUE
CONST=1.5*SQRT(3.0)
ELSE
* TRIANGULAR BASIS.
LC=3
DO 25 I=1,3
T(I)=0.0
DO 20 J=1,3
T(I)=T(I)+RT(I,J)
20 CONTINUE
25 CONTINUE
CONST=0.25*SQRT(3.0)
ENDIF
*
DO 30 KHEX=1,NEL
IF(IDL(KHEX).NE.0) EVECT(IDL(KHEX))=0.0
30 CONTINUE
NUM1=0
DO 60 K=1,NELEM
KHEX=KN(NUM1+LC+1)
IF(VOL(KHEX).EQ.0.0) GO TO 50
DO 40 I=1,LC
IND1=KN(NUM1+I)
IF(IND1.EQ.0) GO TO 40
SS=T(I)*QFR(NUM1+LC+1)/(CONST*VOL(KHEX))
EVECT(IDL(KHEX))=EVECT(IDL(KHEX))+SS*EVECT(IND1)
40 CONTINUE
50 NUM1=NUM1+LC+1
60 CONTINUE
RETURN
END
|