summaryrefslogtreecommitdiff
path: root/Trivac/src/FLDADJ.f
blob: 4be54813c705df0a899da7727dc8358e6c83faf4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
*DECK FLDADJ
      SUBROUTINE FLDADJ(IPTRK,IPSYS,IPFLUX,LL4,ITY,NUN,NGRP,ICL1,ICL2,
     1 IMPX,EPS2,NADI,MAXOUT,MAXINR,EPSINR,ADECT,FKEFF)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of a multigroup eigenvalue system for the calculation of the
* adjoint neutron flux in TRIVAC. Use the preconditionned power method
* with a two-parameter SVAT acceleration technique.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK   L_TRACK pointer to the tracking information.
* IPSYS   L_SYSTEM pointer to system matrices.
* IPFLUX  L_FLUX pointer to the solution.
* LL4     order of the system matrices.
* ITY     type of solution (2: classical Trivac; 3: Thomas-Raviart).
* NUN     number of unknowns in each energy group.
* NGRP    number of energy groups.
* ICL1    number of free iterations in one cycle of the inverse power
*         method.
* ICL2    number of accelerated iterations in one cycle.
* IMPX    print parameter: =0: no print ; =1: minimum printing;
*         =2: iteration history is printed; =3: solution is printed.
* TITR    title.
* EPS2    convergence criteria for the flux.
* NADI    number of inner ADI iterations per outer iteration.
* MAXOUT  maximum number of outer iterations.
* MAXINR  maximum number of thermal iterations.
* EPSINR  thermal iteration epsilon.
* ADECT   initial estimate of the unknown vector.
*
*Parameters: output
* FKEFF   effective multiplication factor.
* ADECT   converged unknown vector.
*
*Reference:
* A. H\'ebert, 'Preconditioning the power method for reactor
* calculations', Nucl. Sci. Eng., 94, 1 (1986).
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPTRK,IPSYS,IPFLUX
      INTEGER LL4,ITY,NUN,NGRP,ICL1,ICL2,IMPX,NADI,MAXOUT,MAXINR
      REAL FKEFF,EPS2,EPSINR,ADECT(NUN,NGRP)
*----
*  LOCAL VARIABLES
*----
      PARAMETER (EPS1=1.0E-5)
      CHARACTER*12 TEXT12
      LOGICAL LOGTES
      DOUBLE PRECISION AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,BEBE,BEBG,BEBH,
     1 BGBG,BGBH,BHBH,AEBE,AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH,
     2 X,DXDA,DXDB,Y,DYDA,DYDB,Z,DZDA,DZDB,F,D2F(2,3),EVAL,ALP,BET,
     3 FMIN
      DOUBLE PRECISION, PARAMETER :: ALP_TAB(24) = (/ 0.2, 0.4, 0.6,
     1  0.8, 1.0, 1.2, 1.5, 2.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0,
     2  40.0, 45.0, 50.0, 55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0 /)
      DOUBLE PRECISION, PARAMETER :: BET_TAB(11) = (/ -1.0, -0.8, -0.6,
     1 -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 /)
      REAL, DIMENSION(:,:), ALLOCATABLE :: GRAD1,GRAD2,GAR1,GAR2,GAR3
      REAL, DIMENSION(:), ALLOCATABLE :: GAF1,GAF2,GAF3
      REAL, DIMENSION(:), POINTER :: AGAR
      TYPE(C_PTR) AGAR_PTR
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(GRAD1(NUN,NGRP),GRAD2(NUN,NGRP),GAR1(NUN,NGRP),
     1 GAR2(NUN,NGRP),GAR3(NUN,NGRP),GAF1(NUN),GAF2(NUN),GAF3(NUN))
*
*     TKT : CPU TIME FOR THE SOLUTION OF LINEAR SYSTEMS.
*     TKB : CPU TIME FOR BILINEAR PRODUCT EVALUATIONS.
      TKT=0.0
      TKB=0.0
      CALL KDRCPU(TK1)
      CALL MTOPEN(IMPX,IPTRK,LL4)
      IF(LL4.GT.NUN) CALL XABORT('FLDADJ: INVALID NUMBER OF UNKNOWNS.')
*----
*  PRECONDITIONED POWER METHOD
*----
      EVAL=1.0D0
      VVV=0.0
      ISTART=1
      NNADI=NADI
      TEST=0.0
      IF(IMPX.GE.1) WRITE (6,600) NADI
      IF(IMPX.GE.2) WRITE (6,610)
      DO 35 IGR=1,NGRP
      WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
      CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,ADECT(1,IGR),GAR1(1,IGR))
      DO 30 JGR=1,NGRP
      IF(JGR.EQ.IGR) GO TO 30
      WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
      CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
      IF(ILONG.EQ.0) GO TO 30
      IF(ITY.EQ.13) THEN
         CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,ADECT(1,JGR),GAF1(1))
         DO 10 I=1,LL4
         GAR1(I,IGR)=GAR1(I,IGR)-GAF1(I)
   10    CONTINUE
      ELSE
         CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
         CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
         DO 20 I=1,ILONG
         GAR1(I,IGR)=GAR1(I,IGR)-AGAR(I)*ADECT(I,JGR)
   20    CONTINUE
      ENDIF
   30 CONTINUE
   35 CONTINUE
      CALL KDRCPU(TK2)
      TKB=TKB+(TK2-TK1)
*
      M=0
   40 M=M+1
*----
*  EIGENVALUE EVALUATION
*----
      CALL KDRCPU(TK1)
      AEBE=0.0D0
      BEBE=0.0D0
      DO 95 IGR=1,NGRP
      DO 50 I=1,LL4
      GAF1(I)=0.0
   50 CONTINUE
      DO 80 JGR=1,NGRP
      WRITE(TEXT12,'(1HB,2I3.3)') JGR,IGR
      CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
      IF(ILONG.EQ.0) GO TO 80
      CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
      CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
      DO 60 I=1,ILONG
      GAF1(I)=GAF1(I)+AGAR(I)*ADECT(I,JGR)
   60 CONTINUE
   80 CONTINUE
      DO 90 I=1,LL4
      AEBE=AEBE+GAR1(I,IGR)*GAF1(I)
      BEBE=BEBE+GAF1(I)**2
      GRAD1(I,IGR)=GAF1(I)
   90 CONTINUE
   95 CONTINUE
      EVAL=AEBE/BEBE
      CALL KDRCPU(TK2)
      TKB=TKB+(TK2-TK1)
*----
*  DIRECTION EVALUATION
*----
      DO 140 IGR=NGRP,1,-1
      CALL KDRCPU(TK1)
      DO 100 I=1,LL4
      GRAD1(I,IGR)=REAL(EVAL)*GRAD1(I,IGR)-GAR1(I,IGR)
  100 CONTINUE
      DO 130 JGR=NGRP,IGR+1,-1
      WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
      CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
      IF(ILONG.EQ.0) GO TO 130
      IF(ITY.EQ.13) THEN
         CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,JGR),GAF1(1))
         DO 110 I=1,LL4
         GRAD1(I,IGR)=GRAD1(I,IGR)+GAF1(I)
  110    CONTINUE
      ELSE
         CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
         CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
         DO 120 I=1,ILONG
         GRAD1(I,IGR)=GRAD1(I,IGR)+AGAR(I)*GRAD1(I,JGR)
  120    CONTINUE
      ENDIF
  130 CONTINUE
      CALL KDRCPU(TK2)
      TKB=TKB+(TK2-TK1)
*
      CALL KDRCPU(TK1)
      WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
      CALL FLDADI(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,IGR),NNADI)
      CALL KDRCPU(TK2)
      TKT=TKT+(TK2-TK1)
  140 CONTINUE
*----
*  PERFORM THERMAL (UP-SCATTERING) ITERATIONS
*----
      IF(MAXINR.GT.1) THEN
         CALL FLDTHR(IPTRK,IPSYS,IPFLUX,.TRUE.,LL4,ITY,NUN,NGRP,ICL1,
     1   ICL2,IMPX,NNADI,0,MAXINR,EPSINR,ITER,TKT,TKB,GRAD1)
      ENDIF
*----
*  DISPLACEMENT EVALUATION
*----
      F=0.0D0
      DELS=ABS(REAL((EVAL-VVV)/EVAL))
      VVV=REAL(EVAL)
      CALL KDRCPU(TK1)
*----
*  EVALUATION OF THE TWO ACCELERATION PARAMETERS ALP AND BET
*----
      ALP=1.0D0
      BET=0.0D0
      N=0
      AEAE=0.0D0
      AEAG=0.0D0
      AEAH=0.0D0
      AGAG=0.0D0
      AGAH=0.0D0
      AHAH=0.0D0
      BEBG=0.0D0
      BEBH=0.0D0
      BGBG=0.0D0
      BGBH=0.0D0
      BHBH=0.0D0
      AEBG=0.0D0
      AEBH=0.0D0
      AGBE=0.0D0
      AGBG=0.0D0
      AGBH=0.0D0
      AHBE=0.0D0
      AHBG=0.0D0
      AHBH=0.0D0
      DO 175 IGR=1,NGRP
      WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
      CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,IGR),GAR2(1,IGR))
      DO 170 JGR=1,NGRP
      IF(JGR.EQ.IGR) GO TO 170
      WRITE(TEXT12,'(1HA,2I3.3)') JGR,IGR
      CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
      IF(ILONG.EQ.0) GO TO 170
      IF(ITY.EQ.13) THEN
         CALL MTLDLM(TEXT12,IPTRK,IPSYS,LL4,ITY,GRAD1(1,JGR),GAF1(1))
         DO 150 I=1,LL4
         GAR2(I,IGR)=GAR2(I,IGR)-GAF1(I)
  150    CONTINUE
      ELSE
         CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
         CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
         DO 160 I=1,ILONG
         GAR2(I,IGR)=GAR2(I,IGR)-AGAR(I)*GRAD1(I,JGR)
  160    CONTINUE
      ENDIF
  170 CONTINUE
  175 CONTINUE
      IF(1+MOD(M-ISTART,ICL1+ICL2).GT.ICL1) THEN
         DO 205 IGR=1,NGRP
         GAF1(:LL4)=0.0
         GAF2(:LL4)=0.0
         GAF3(:LL4)=0.0
         DO 190 JGR=1,NGRP
         WRITE(TEXT12,'(1HB,2I3.3)') JGR,IGR
         CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
         IF(ILONG.EQ.0) GO TO 190
         CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
         CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
         DO 180 I=1,ILONG
         GAF1(I)=GAF1(I)+AGAR(I)*ADECT(I,JGR)
         GAF2(I)=GAF2(I)+AGAR(I)*GRAD1(I,JGR)
         GAF3(I)=GAF3(I)+AGAR(I)*GRAD2(I,JGR)
  180    CONTINUE
  190    CONTINUE
         DO 200 I=1,LL4
*        COMPUTE (A ,A )
         AEAE=AEAE+GAR1(I,IGR)**2
         AEAG=AEAG+GAR1(I,IGR)*GAR2(I,IGR)
         AEAH=AEAH+GAR1(I,IGR)*GAR3(I,IGR)
         AGAG=AGAG+GAR2(I,IGR)**2
         AGAH=AGAH+GAR2(I,IGR)*GAR3(I,IGR)
         AHAH=AHAH+GAR3(I,IGR)**2
*        COMPUTE (B ,B )
         BEBG=BEBG+GAF1(I)*GAF2(I)
         BEBH=BEBH+GAF1(I)*GAF3(I)
         BGBG=BGBG+GAF2(I)**2
         BGBH=BGBH+GAF2(I)*GAF3(I)
         BHBH=BHBH+GAF3(I)**2
*        COMPUTE (A ,B )
         AEBG=AEBG+GAR1(I,IGR)*GAF2(I)
         AEBH=AEBH+GAR1(I,IGR)*GAF3(I)
         AGBE=AGBE+GAR2(I,IGR)*GAF1(I)
         AGBG=AGBG+GAR2(I,IGR)*GAF2(I)
         AGBH=AGBH+GAR2(I,IGR)*GAF3(I)
         AHBE=AHBE+GAR3(I,IGR)*GAF1(I)
         AHBG=AHBG+GAR3(I,IGR)*GAF2(I)
         AHBH=AHBH+GAR3(I,IGR)*GAF3(I)
  200    CONTINUE
  205    CONTINUE
*
  210    N=N+1
         IF(N.GT.10) GO TO 215
*        COMPUTE X(M+1)
         X=BEBE+ALP*ALP*BGBG+BET*BET*BHBH+2.0D0*(ALP*BEBG+BET*BEBH
     1   +ALP*BET*BGBH)
         DXDA=2.0D0*(BEBG+ALP*BGBG+BET*BGBH)
         DXDB=2.0D0*(BEBH+ALP*BGBH+BET*BHBH)
*        COMPUTE Y(M+1)
         Y=AEAE+ALP*ALP*AGAG+BET*BET*AHAH+2.0D0*(ALP*AEAG+BET*AEAH
     1   +ALP*BET*AGAH)
         DYDA=2.0D0*(AEAG+ALP*AGAG+BET*AGAH)
         DYDB=2.0D0*(AEAH+ALP*AGAH+BET*AHAH)
*        COMPUTE Z(M+1)
         Z=AEBE+ALP*ALP*AGBG+BET*BET*AHBH+ALP*(AEBG+AGBE)
     1   +BET*(AEBH+AHBE)+ALP*BET*(AGBH+AHBG)
         DZDA=AEBG+AGBE+2.0D0*ALP*AGBG+BET*(AGBH+AHBG)
         DZDB=AEBH+AHBE+ALP*(AGBH+AHBG)+2.0D0*BET*AHBH
*        COMPUTE F(M+1)
         F=X*Y-Z*Z
         D2F(1,1)=2.0D0*(BGBG*Y+DXDA*DYDA+X*AGAG-DZDA**2-2.0D0*Z*AGBG)
         D2F(1,2)=2.0D0*BGBH*Y+DXDA*DYDB+DXDB*DYDA+2.0D0*X*AGAH
     1   -2.0D0*DZDA*DZDB-2.0D0*Z*(AGBH+AHBG)
         D2F(2,2)=2.0D0*(BHBH*Y+DXDB*DYDB+X*AHAH-DZDB**2-2.0D0*Z*AHBH)
         D2F(2,1)=D2F(1,2)
         D2F(1,3)=DXDA*Y+X*DYDA-2.0D0*Z*DZDA
         D2F(2,3)=DXDB*Y+X*DYDB-2.0D0*Z*DZDB
*        SOLUTION OF A LINEAR SYSTEM.
         CALL ALSBD(2,1,D2F,IER,2)
         IF(IER.NE.0) GO TO 215
         ALP=ALP-D2F(1,3)
         BET=BET-D2F(2,3)
         IF(ALP.GT.100.0) GO TO 215
         IF((ABS(D2F(1,3)).LE.1.0D-4).AND.(ABS(D2F(2,3)).LE.1.0D-4))
     1   GO TO 220
         GO TO 210
*
*        alternative algorithm in case of Newton-Raphton failure
  215    IF(IMPX.GT.0) WRITE(6,'(/30H FLDADJ: FAILURE OF THE NEWTON,
     1   55H-RAPHTON ALGORIHTHM FOR COMPUTING THE OVERRELAXATION PA,
     2   9HRAMETERS.)')
         IAMIN=999
         IBMIN=999
         FMIN=HUGE(FMIN)
         DO IA=1,SIZE(ALP_TAB)
           ALP=ALP_TAB(IA)
           DO IB=1,SIZE(BET_TAB)
             BET=BET_TAB(IB)
*            COMPUTE X
             X=BEBE+ALP*ALP*BGBG+BET*BET*BHBH+2.0D0*(ALP*BEBG+BET*BEBH
     1       +ALP*BET*BGBH)
*            COMPUTE Y
             Y=AEAE+ALP*ALP*AGAG+BET*BET*AHAH+2.0D0*(ALP*AEAG+BET*AEAH
     1       +ALP*BET*AGAH)
*            COMPUTE Z
             Z=AEBE+ALP*ALP*AGBG+BET*BET*AHBH+ALP*(AEBG+AGBE)
     1       +BET*(AEBH+AHBE)+ALP*BET*(AGBH+AHBG)
*            COMPUTE F
             F=X*Y-Z*Z
             IF(F.LT.FMIN) THEN
               IAMIN=IA
               IBMIN=IB
               FMIN=F
             ENDIF
           ENDDO
         ENDDO
         ALP=ALP_TAB(IAMIN)
         BET=BET_TAB(IBMIN)
  220    BET=BET/ALP
         IF((ALP.LT.1.0D0).AND.(ALP.GT.0.0D0)) THEN
            ALP=1.0D0
            BET=0.0D0
         ELSE IF(ALP.LE.0.0D0) THEN
            ISTART=M+1
            ALP=1.0D0
            BET=0.0D0
         ENDIF
         DO 235 IGR=1,NGRP
         DO 230 I=1,LL4
         GRAD1(I,IGR)=REAL(ALP)*(GRAD1(I,IGR)+REAL(BET)*GRAD2(I,IGR))
         GAR2(I,IGR)=REAL(ALP)*(GAR2(I,IGR)+REAL(BET)*GAR3(I,IGR))
  230    CONTINUE
  235    CONTINUE
      ENDIF
      CALL KDRCPU(TK2)
      TKB=TKB+(TK2-TK1)
*
      LOGTES=(M.LT.ICL1).OR.(MOD(M-ISTART,ICL1+ICL2).EQ.ICL1-1)
      IF(LOGTES.AND.(DELS.LE.EPS1))THEN
         DELT=0.0
         DO 290 IGR=1,NGRP
         GAF1(:LL4)=0.0
         GAF2(:LL4)=0.0
         DO 250 JGR=1,NGRP
         WRITE(TEXT12,'(1HB,2I3.3)') JGR,IGR
         CALL LCMLEN(IPSYS,TEXT12,ILONG,ITYLCM)
         IF(ILONG.EQ.0) GO TO 250
         CALL LCMGPD(IPSYS,TEXT12,AGAR_PTR)
         CALL C_F_POINTER(AGAR_PTR,AGAR,(/ ILONG /))
         DO 240 I=1,ILONG
         GAF1(I)=GAF1(I)+AGAR(I)*ADECT(I,JGR)
         GAF2(I)=GAF2(I)+AGAR(I)*GRAD1(I,JGR)
  240    CONTINUE
  250    CONTINUE
         DELN=0.0
         DELD=0.0
         DO 280 I=1,LL4
         ADECT(I,IGR)=ADECT(I,IGR)+GRAD1(I,IGR)
         GAR1(I,IGR)=GAR1(I,IGR)+GAR2(I,IGR)
         GRAD2(I,IGR)=GRAD1(I,IGR)
         GAR3(I,IGR)=GAR2(I,IGR)
         DELN=MAX(DELN,ABS(GAF2(I)))
         DELD=MAX(DELD,ABS(GAF1(I)))
  280    CONTINUE
         IF(DELD.NE.0.0) DELT=MAX(DELT,DELN/DELD)
  290    CONTINUE
         IF(IMPX.GE.2) WRITE (6,615) M,AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,
     1   BEBE,ALP,BET,EVAL,F,DELS,DELT,N,BEBG,BEBH,BGBG,BGBH,BHBH,AEBE,
     2   AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH
         IF(DELT.LE.EPS2) GO TO 310
      ELSE
         DO 305 IGR=1,NGRP
         DO 300 I=1,LL4
         ADECT(I,IGR)=ADECT(I,IGR)+GRAD1(I,IGR)
         GAR1(I,IGR)=GAR1(I,IGR)+GAR2(I,IGR)
         GRAD2(I,IGR)=GRAD1(I,IGR)
         GAR3(I,IGR)=GAR2(I,IGR)
  300    CONTINUE
  305    CONTINUE
         IF(IMPX.GE.2) WRITE (6,620) M,AEAE,AEAG,AEAH,AGAG,AGAH,AHAH,
     1   BEBE,ALP,BET,EVAL,F,DELS,N,BEBG,BEBH,BGBG,BGBH,BHBH,AEBE,
     2   AEBG,AEBH,AGBE,AGBG,AGBH,AHBE,AHBG,AHBH
      ENDIF
      IF(M.EQ.1) TEST=DELS
      IF((M.GT.5).AND.(DELS.GT.TEST)) CALL XABORT('FLDADJ: CONVERGENCE'
     1 //' FAILURE.')
      IF(M.GE.MAXOUT) THEN
         WRITE (6,690)
         GO TO 310
      ENDIF
      IF(MOD(M,36).EQ.0) THEN
         ISTART=M+1
         NNADI=NNADI+1
         IF(IMPX.GE.1) WRITE (6,700) NNADI
      ENDIF
      GO TO 40
*----
*  SOLUTION EDITION
*----
  310 FKEFF=REAL(1.0D0/EVAL)
      IF(IMPX.EQ.1) WRITE (6,640) M
      IF(IMPX.GE.1) THEN
         WRITE (6,650) TKT,TKB,TKT+TKB
         WRITE (6,670) FKEFF
      ENDIF
      IF(IMPX.EQ.3) THEN
         DO 320 IGR=1,NGRP
         WRITE (6,680) IGR,(ADECT(I,IGR),I=1,LL4)
  320    CONTINUE
      ENDIF
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(GRAD1,GRAD2,GAR1,GAR2,GAR3,GAF1,GAF2,GAF3)
      RETURN
*
  600 FORMAT(1H1/50H FLDADJ: ITERATIVE PROCEDURE BASED ON PRECONDITION,
     1 17HED POWER METHOD (,I2,37H ADI ITERATIONS PER OUTER ITERATION)./
     2 9X,17HADJOINT EQUATION.)
  610 FORMAT(//5X,17HBILINEAR PRODUCTS,48X,5HALPHA,3X,4HBETA,3X,
     1 12HEIGENVALUE..,12X,8HACCURACY,11(1H.),2X,1HN)
  615 FORMAT(1X,I3,1P,7E9.1,0P,2F8.3,E14.6,3E10.2,I4/(4X,1P,7E9.1))
  620 FORMAT(1X,I3,1P,7E9.1,0P,2F8.3,E14.6,2E10.2,10X,I4/(4X,1P,7E9.1))
  640 FORMAT(/23H FLDADJ: CONVERGENCE IN,I4,12H ITERATIONS.)
  650 FORMAT(/53H FLDADJ: CPU TIME USED TO SOLVE THE TRIANGULAR LINEAR,
     1 10H SYSTEMS =,F10.3/23X,34HTO COMPUTE THE BILINEAR PRODUCTS =,
     2 F10.3,20X,16HTOTAL CPU TIME =,F10.3)
  670 FORMAT(//42H FLDADJ: EFFECTIVE MULTIPLICATION FACTOR =,1P,E17.10/)
  680 FORMAT(//53H FLDADJ: ADJOINT EIGENVECTOR CORRESPONDING TO THE GRO,
     1 2HUP,I4//(5X,1P,8E14.5))
  690 FORMAT(/53H FLDADJ: ***WARNING*** THE MAXIMUM NUMBER OF OUTER IT,
     1 20HERATIONS IS REACHED.)
  700 FORMAT(/53H FLDADJ: INCREASING THE NUMBER OF INNER ITERATIONS TO,
     1 I3,36H ADI ITERATIONS PER OUTER ITERATION./)
      END