1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
*DECK BIVSPS
SUBROUTINE BIVSPS(IPTRK,IPMACR,IPSYS,IMPX,NGRP,NEL,NLF,NANI,NW,
1 NBFIS,NALBP,LDIFF,MAT,VOL,NBMIX)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Recover the cross-section data in LCM object with pointer IPMACR,
* compute and store the corresponding system matrices for a simplified
* PN approximation.
*
*Copyright:
* Copyright (C) 2004 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK L_TRACK pointer to the bivac tracking information.
* IPMACR L_MACROLIB pointer to the cross sections.
* IPSYS L_SYSTEM pointer to system matrices.
* IMPX print parameter (equal to zero for no print).
* NGRP number of energy groups.
* NEL total number of finite elements.
* NLF number of Legendre orders for the flux (even number).
* NANI number of Legendre orders for the scattering cross sections.
* NW maximum Legendre order (0 or 1) for the total cross sections.
* NBFIS number of fissionable isotopes.
* NALBP number of physical albedos per energy group.
* LDIFF flag set to .true. to use 1/3D as 'NTOT1' cross sections.
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* NBMIX total number of material mixtures in the macrolib.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK,IPMACR,IPSYS
INTEGER IMPX,NGRP,NEL,NLF,NANI,NW,NBFIS,NALBP,MAT(NEL),NBMIX
REAL VOL(NEL)
LOGICAL LDIFF
*----
* LOCAL VARIABLES
*----
CHARACTER TEXT12*12,CM*2,HSMG*131
LOGICAL LFIS
TYPE(C_PTR) JPMACR,KPMACR
INTEGER, DIMENSION(:), ALLOCATABLE :: IJJ,NJJ,IPOS,IND
REAL, DIMENSION(:), ALLOCATABLE :: WORK
REAL, DIMENSION(:,:), ALLOCATABLE :: ALBP,GAMMA,SGD,ZUFIS
REAL, DIMENSION(:,:,:), ALLOCATABLE :: CHI,RCAT,RCATI
*
ALB(X)=0.5*(1.0-X)/(1.0+X)
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(IJJ(NBMIX),NJJ(NBMIX),IPOS(NBMIX),IND(NGRP))
ALLOCATE(GAMMA(NALBP,NGRP),SGD(NBMIX,2*NLF),WORK(NBMIX*NGRP),
1 CHI(NBMIX,NBFIS,NGRP),ZUFIS(NBMIX,NBFIS),RCAT(NGRP,NGRP,NBMIX),
2 RCATI(NGRP,NGRP,NBMIX))
*----
* PROCESS PHYSICAL ALBEDO INFORMATION AND CALCULATION OF
* MULTIGROUP ALBEDO FUNCTIONS (RAVIART-THOMAS CASE).
*----
IF(NALBP.GT.0) THEN
ALLOCATE(ALBP(NALBP,NGRP))
CALL LCMGET(IPMACR,'ALBEDO',ALBP)
DO IGR=1,NGRP
GAMMA(:NALBP,IGR)=0.0
DO IALB=1,NALBP
IF(ALBP(IALB,IGR).NE.1.0) THEN
GAMMA(IALB,IGR)=1.0/ALB(ALBP(IALB,IGR))
ELSE
GAMMA(IALB,IGR)=1.0E20
ENDIF
ENDDO
WRITE(TEXT12,'(9HALBEDO-FU,I3.3)') IGR
CALL LCMPUT(IPSYS,TEXT12,NALBP,2,GAMMA(1,IGR))
ENDDO
DEALLOCATE(ALBP)
ENDIF
*----
* PROCESS MACROLIB INFORMATION FOR VARIOUS LEGENDRE ORDERS.
*----
IF(NLF.EQ.0) CALL XABORT('BIVSPS: SPN APPROXIMATION REQUESTED.')
JPMACR=LCMGID(IPMACR,'GROUP')
DO 112 IL=1,NLF
WRITE(CM,'(I2.2)') IL-1
RCAT(:NGRP,:NGRP,:NBMIX)=0.0
DO 50 IGR=1,NGRP
* PROCESS SECONDARY GROUP IGR.
KPMACR=LCMGIL(JPMACR,IGR)
SGD(:NBMIX,1)=0.0
CALL LCMLEN(KPMACR,'SIGW'//CM,LENGT,ITYLCM)
IF((LENGT.GT.0).AND.(IL.LE.NANI)) THEN
IF(LENGT.GT.NBMIX) CALL XABORT('BIVSPS: INVALID LENGTH FOR'
1 //' SIGW'//CM//' CROSS SECTIONS.')
CALL LCMGET(KPMACR,'SIGW'//CM,SGD(1,1))
ENDIF
WRITE(TEXT12,'(4HNTOT,I1)') MIN(IL-1,9)
CALL LCMLEN(KPMACR,TEXT12,LENGT,ITYLCM)
CALL LCMLEN(KPMACR,'NTOT1',LENGT1,ITYLCM)
IF((LENGT1.GT.0).AND.(NW.EQ.0)) CALL XABORT('BIVSPS: YOU MUST HA'
1 //'VE NW>0.')
IF((IL.EQ.1).AND.(LENGT.NE.NBMIX)) CALL XABORT('BIVSPS: NO NTOT0'
1 //' CROSS SECTIONS.')
IF(MOD(IL-1,2).EQ.0) THEN
* macroscopic total cross section in even-parity equations.
IF(LENGT.EQ.NBMIX) THEN
CALL LCMGET(KPMACR,TEXT12,SGD(1,2))
ELSE
CALL LCMGET(KPMACR,'NTOT0',SGD(1,2))
ENDIF
ELSE
* macroscopic total cross section in odd-parity equations.
IF(LDIFF) THEN
CALL LCMLEN(KPMACR,'DIFF',LENGT,ITYLCM)
IF(LENGT.EQ.0) CALL XABORT('BIVSPS: DIFFUSION COEFFICIENTS'
1 //' EXPECTED IN THE MACROLIB.')
IF(LENGT.GT.NBMIX) CALL XABORT('BIVSPS: INVALID LENGTH FOR'
1 //' DIFFUSION COEFFICIENTS.')
CALL LCMGET(KPMACR,'DIFF',SGD(1,2))
DO 5 IBM=1,NBMIX
SGD(IBM,2)=1.0/(3.0*SGD(IBM,2))
5 CONTINUE
ELSE IF(NW.EQ.0) THEN
CALL LCMGET(KPMACR,'NTOT0',SGD(1,2))
ELSE IF(LENGT.EQ.NBMIX) THEN
CALL LCMGET(KPMACR,TEXT12,SGD(1,2))
ELSE IF(LENGT1.EQ.NBMIX) THEN
CALL LCMGET(KPMACR,'NTOT1',SGD(1,2))
ELSE
CALL LCMGET(KPMACR,'NTOT0',SGD(1,2))
ENDIF
ENDIF
DO 10 IBM=1,NBMIX
IF((MOD(IL-1,2).NE.0).AND.LDIFF) THEN
RCAT(IGR,IGR,IBM)=SGD(IBM,2)
ELSE
IF(SGD(IBM,1).GT.SGD(IBM,2)) THEN
WRITE(HSMG,'(28HBIVSPS: NEGATIVE XS IN GROUP,I5)') IGR
CALL XABORT(HSMG)
ENDIF
RCAT(IGR,IGR,IBM)=SGD(IBM,2)-SGD(IBM,1)
ENDIF
10 CONTINUE
IF((MOD(IL-1,2).NE.0).AND.LDIFF) GO TO 50
CALL LCMLEN(KPMACR,'NJJS'//CM,LENGT,ITYLCM)
IF(LENGT.GT.NBMIX) CALL XABORT('BIVSPS: INVALID LENGTH FOR NJJS'
1 //CM//' INFORMATION.')
IF((LENGT.GT.0).AND.(IL.LE.NANI)) THEN
CALL LCMGET(KPMACR,'NJJS'//CM,NJJ)
CALL LCMGET(KPMACR,'IJJS'//CM,IJJ)
IGMIN=IGR
IGMAX=IGR
DO 20 IBM=1,NBMIX
IGMIN=MIN(IGMIN,IJJ(IBM)-NJJ(IBM)+1)
IGMAX=MAX(IGMAX,IJJ(IBM))
20 CONTINUE
CALL LCMGET(KPMACR,'IPOS'//CM,IPOS)
CALL LCMGET(KPMACR,'SCAT'//CM,WORK)
DO 40 JGR=IGMAX,IGMIN,-1
IF(JGR.EQ.IGR) GO TO 40
DO 30 IBM=1,NBMIX
IF((JGR.GT.IJJ(IBM)-NJJ(IBM)).AND.(JGR.LE.IJJ(IBM))) THEN
RCAT(IGR,JGR,IBM)=-WORK(IPOS(IBM)+IJJ(IBM)-JGR)
ENDIF
30 CONTINUE
40 CONTINUE
ENDIF
50 CONTINUE
*----
* INVERSION OF THE REMOVAL MATRIX FOR CASES WITH IELEM > 1.
*----
DO 70 IBM=1,NBMIX
DO 65 JGR=1,NGRP
DO 60 IGR=1,NGRP
RCATI(IGR,JGR,IBM)=RCAT(IGR,JGR,IBM)
60 CONTINUE
65 CONTINUE
CALL ALINV(NGRP,RCATI(1,1,IBM),NGRP,IER,IND)
IF(IER.NE.0) CALL XABORT('BIVSPS: SINGULAR MATRIX.')
70 CONTINUE
*
DO 111 IGR=1,NGRP
IGMIN=IGR
IGMAX=IGR
DO 85 IBM=1,NBMIX
DO 80 JGR=1,NGRP
IF((RCAT(IGR,JGR,IBM).NE.0.0).OR.(RCATI(IGR,JGR,IBM).NE.0.0)) THEN
IGMIN=MIN(IGMIN,JGR)
IGMAX=MAX(IGMAX,JGR)
ENDIF
80 CONTINUE
85 CONTINUE
DO 110 JGR=IGMIN,IGMAX
DO 90 IBM=1,NBMIX
WORK(IBM)=RCAT(IGR,JGR,IBM)
90 CONTINUE
WRITE(TEXT12,'(4HSCAR,A2,2I3.3)') CM,IGR,JGR
CALL LCMPUT(IPSYS,TEXT12,NBMIX,2,WORK)
DO 100 IBM=1,NBMIX
WORK(IBM)=RCATI(IGR,JGR,IBM)
100 CONTINUE
WRITE(TEXT12,'(4HSCAI,A2,2I3.3)') CM,IGR,JGR
CALL LCMPUT(IPSYS,TEXT12,NBMIX,2,WORK)
110 CONTINUE
111 CONTINUE
112 CONTINUE
*----
* COMPUTE AND FACTORIZE THE DIAGONAL SYSTEM MATRICES.
*----
DO 162 IGR=1,NGRP
DO 140 IL=1,NLF
WRITE(TEXT12,'(4HSCAR,I2.2,2I3.3)') IL-1,IGR,IGR
CALL LCMGET(IPSYS,TEXT12,SGD(1,IL))
WRITE(TEXT12,'(4HSCAI,I2.2,2I3.3)') IL-1,IGR,IGR
CALL LCMGET(IPSYS,TEXT12,SGD(1,NLF+IL))
140 CONTINUE
WRITE(TEXT12,'(1HA,2I3.3)') IGR,IGR
CALL BIVASM(TEXT12,0,IPTRK,IPSYS,IMPX,NBMIX,NEL,NLF,2*NLF,NALBP,
1 MAT,VOL,GAMMA,SGD)
*----
* PUT A FLAG IN IPSYS TO IDENTIFY NON-ZERO SCATTERING TERMS.
*----
DO 161 IL=1,NLF
DO 160 JGR=1,NGRP
WRITE(TEXT12,'(4HSCAR,I2.2,2I3.3)') IL-1,IGR,JGR
CALL LCMLEN(IPSYS,TEXT12,LENGT,ITYLCM)
IF(LENGT.EQ.NBMIX) THEN
WRITE(TEXT12,'(1HA,2I3.3)') IGR,JGR
CALL LCMPUT(IPSYS,TEXT12,1,2,0.0)
ENDIF
160 CONTINUE
161 CONTINUE
162 CONTINUE
*----
* PROCESS FISSION SPECTRUM TERMS.
*----
KPMACR=LCMGIL(JPMACR,1)
CALL LCMLEN(KPMACR,'CHI',LENGT,ITYLCM)
IF(LENGT.GT.0) THEN
IF(LENGT.NE.NBMIX*NBFIS) CALL XABORT('BIVSPS: INVALID LENGTH '
1 //'FOR CHI INFORMATION.')
DO 170 IGR=1,NGRP
KPMACR=LCMGIL(JPMACR,IGR)
CALL LCMGET(KPMACR,'CHI',CHI(1,1,IGR))
170 CONTINUE
ELSE
DO 182 IBM=1,NBMIX
DO 181 IFISS=1,NBFIS
CHI(IBM,IFISS,1)=1.0
DO 180 IGR=2,NGRP
CHI(IBM,IFISS,IGR)=0.0
180 CONTINUE
181 CONTINUE
182 CONTINUE
ENDIF
*----
* PROCESS FISSION NUSIGF TERMS.
*----
DO 220 IGR=1,NGRP
* PROCESS SECONDARY GROUP IGR.
LFIS=.FALSE.
DO 195 IBM=1,NBMIX
DO 190 IFISS=1,NBFIS
LFIS=LFIS.OR.(CHI(IBM,IFISS,IGR).NE.0.0)
190 CONTINUE
195 CONTINUE
IF(LFIS) THEN
DO 210 JGR=1,NGRP
KPMACR=LCMGIL(JPMACR,JGR)
CALL LCMLEN(KPMACR,'NUSIGF',LENGT,ITYLCM)
IF(LENGT.NE.NBMIX*NBFIS) CALL XABORT('BIVSPS: INVALID LENGTH '
1 //'FOR NUSIGF INFORMATION.')
IF(LENGT.GT.0) THEN
CALL LCMGET(KPMACR,'NUSIGF',ZUFIS)
SGD(:NBMIX,:2*NLF)=0.0
DO 205 IBM=1,NBMIX
DO 200 IFISS=1,NBFIS
SGD(IBM,1)=SGD(IBM,1)+CHI(IBM,IFISS,IGR)*ZUFIS(IBM,IFISS)
200 CONTINUE
205 CONTINUE
WRITE(TEXT12,'(4HFISS,2I3.3)') IGR,JGR
CALL LCMPUT(IPSYS,TEXT12,NBMIX,2,SGD(1,1))
WRITE (TEXT12,'(1HB,2I3.3)') IGR,JGR
CALL BIVASM(TEXT12,1,IPTRK,IPSYS,IMPX,NBMIX,NEL,2,4,NALBP,
1 MAT,VOL,GAMMA,SGD)
ENDIF
210 CONTINUE
ENDIF
220 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(IJJ,NJJ,IPOS,IND)
DEALLOCATE(GAMMA,SGD,WORK,CHI,ZUFIS,RCAT,RCATI)
RETURN
END
|