1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
|
*DECK BIVCOL
SUBROUTINE BIVCOL (IPTRK,IMPX,IELEM,ICOL)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Selection of the unit matrices (mass, stiffness, etc.) for a finite
* element approximation.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK L_TRACK pointer to the tracking information.
* IMPX print parameter.
* IELEM degree of the finite elements: =1: (linear polynomials);
* =2: (parabolic polynomials); =3: (cubic polynomials);
* =4: (quartic polynomials).
* ICOL type of quadrature used to integrate the mass matrices:
* =1: (analytic integration); =2: (Gauss-Lobatto quadrature)
* =3: (Gauss-Legendre quadrature).
* IELEM=1 with ICOL=2 is equivalent to finite differences.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPTRK
INTEGER IMPX,IELEM,ICOL
*----
* LOCAL VARIABLES
*----
CHARACTER*40 HTYPE
DOUBLE PRECISION DSUM
REAL EL(2,2),TL(2),TSL(2),RL(2,2),RSL(2,2),QSL(2,2),TSL1(2),
1 TSL2(2),RL2(2,2),RSL2(2,2)
REAL RHA6(6,6),QHA6(6,6),RHL6(6,6),QHL6(6,6),RTA(3,3),QTA(3,3),
1 RTL(3,3),QTL(3,3)
REAL EP(3,3),TP(3),TSP(3),RP(3,3),VP(3,2),HP(3,2),RSP(3,3),
1 QSP(3,3),EP1(3,3),TP1(3),TSP1(3),VP1(3,2),HP1(3,2),QSP1(3,3),
2 EP2(3,3),TP2(3),TSP2(3),RP2(3,3),VP2(3,2),HP2(3,2),RSP2(3,3),
3 QSP2(3,3)
REAL EC(4,4),TC(4),TSC(4),RC(4,4),VC(4,3),HC(4,3),RSC(4,4),
1 QSC(4,4),EC1(4,4),TC1(4),TSC1(4),VC1(4,3),HC1(4,3),QSC1(4,4),
2 EC2(4,4),TC2(4),TSC2(4),RC2(4,4),VC2(4,3),HC2(4,3),RSC2(4,4),
3 QSC2(4,4)
REAL EQ(5,5),VQ(5,4),HQ(5,4),TQ(5),TSQ(5),QSQ(5,5)
REAL RLQ(2,2),RLR(2,2),RL1Q(2,2),RL1R(2,2),RL2Q(2,2),RL2R(2,2)
*-----------------------------------------------------------------------
* THE BIVAC REFERENCE ELEMENT IS DEFINED BETWEEN POINTS -1/2 AND +1/2.
* THE COLLOCATION POLYNOMIALS CORRESPONDING TO APPROXIMATIONS LL2$, PL3,
* PL3$, PL3#, CL4, CL4$, CL4# AND QL5$ ARE PARTIALLY OR COMPLETELY
* ORTHONORMALIZED IN ORDER TO PRODUCE A SPARSE MASS MATRIX.
*-----------------------------------------------------------------------
*
******************* FINITE ELEMENT BASIC MATRICES **********************
* *
REAL T(5),TS(5),R(25),RS(25),Q(25),QS(25),V(20),H(20),E(25),
1 RH(6,6),QH(6,6),RT(3,3),QT(3,3),R1DQ(4),R1DR(4)
* *
* LC : NUMBER OF POLYNOMIALS IN A COMPLETE 1-D BASIS. *
* T : CARTESIAN LINEAR PRODUCT VECTOR. *
* TS : CYLINDRICAL LINEAR PRODUCT VECTOR. *
* R : CARTESIAN MASS MATRIX. *
* RS : CYLINDRICAL MASS MATRIX. *
* Q : CARTESIAN STIFFNESS MATRIX. *
* QS : CYLINDRICAL STIFFNESS MATRIX. *
* V : NODAL COUPLING MATRIX. *
* H : PIOLAT (HEXAGONAL) COUPLING MATRIX. *
* E : POLYNOMIAL COEFFICIENTS. *
* RH : HEXAGONAL MASS MATRIX. *
* QH : HEXAGONAL STIFFNESS MATRIX. *
* RT : TRIANGULAR MASS MATRIX. *
* QT : TRIANGULAR STIFFNESS MATRIX. *
* R1DQ : SPHERICAL MASS MATRIX. *
* R1DR : SPHERICAL MASS MATRIX. *
* *
************************************************************************
*
*----
* LINEAR LAGRANGIAN POLYNOMIALS.
*----
DATA EL/0.5,-1.0,0.5,1.0/
DATA TL/0.5,0.5/
DATA RL/
$ 0.333333333333, 0.166666666667, 0.166666666667, 0.333333333333/
* CYLINDRICAL OPTION MATRICES:
DATA TSL/-0.083333333333, 0.083333333333/
DATA RSL/
$-0.083333333333, 0.000000000000, 0.000000000000, 0.083333333333/
DATA QSL/
$ 0.000000000000, 0.000000000000, 0.000000000000, 0.000000000000/
* SPHERICAL OPTION MATRICES (ANALYTIC INTEGRATION):
DATA RLQ/-.083333333333, 0.0, 0.0, 0.083333333333/
DATA RLR/
$ 0.033333333333, 0.008333333333, 0.008333333333, 0.033333333333/
* GAUSS-LOBATTO (FINITE DIFFERENCES) MATRICES:
DATA TSL1/-0.25,0.25/
* SPHERICAL OPTION MATRICES (GAUSS-LOBATTO):
DATA RL1Q/-0.166666666667, 0.0, 0.0, 0.166666666667/
DATA RL1R/0.041666666667, 0.0, 0.0, 0.041666666667/
* GAUSS-LEGENDRE (SUPERCONVERGENT) MATRICES:
DATA TSL2/0.0,0.0/
DATA RL2/0.25,0.25,0.25,0.25/
DATA RSL2/0.0,0.0,0.0,0.0/
* SPHERICAL OPTION MATRICES (SUPERCONVERGENT):
DATA RL2Q/
$ -0.03472222222,-0.0069444444444,-0.0069444444444, 0.048611111111/
DATA RL2R/
$ 0.00925925926, 0.0185185185185, 0.0185185185185, 0.037037037037/
*
* ANALYTIC INTEGRATION FOR HEXAGON AND TRIANGLE.
DATA RHA6/
> 0.158470 , 0.086580 , 0.036760 , 0.027870 , 0.036760 , 0.086580,
> 0.086580 , 0.158470 , 0.086580 , 0.036760 , 0.027870 , 0.036760,
> 0.036760 , 0.086580 , 0.158470 , 0.086580 , 0.036760 , 0.027870,
> 0.027870 , 0.036760 , 0.086580 , 0.158470 , 0.086580 , 0.036760,
> 0.036760 , 0.027870 , 0.036760 , 0.086580 , 0.158470 , 0.086580,
> 0.086580 , 0.036760 , 0.027870 , 0.036760 , 0.086580 , 0.158470/
DATA QHA6/
> 0.760640 ,-0.161980 ,-0.169310 ,-0.098060 ,-0.169310 ,-0.161980,
>-0.161980 , 0.760640 ,-0.161980 ,-0.169310 ,-0.098060 ,-0.169310,
>-0.169310 ,-0.161980 , 0.760640 ,-0.161980 ,-0.169310 ,-0.098060,
>-0.098060 ,-0.169310 ,-0.161980 , 0.760640 ,-0.161980 ,-0.169310,
>-0.169310 ,-0.098060 ,-0.169310 ,-0.161980 , 0.760640 ,-0.161980,
>-0.161980 ,-0.169310 ,-0.098060 ,-0.169310 ,-0.161980 , 0.760640/
DATA RTA/
> 1.0, 0.5, 0.5, 0.5, 1.0, 0.5, 0.5, 0.5, 1.0/
DATA QTA/
> 1.0,-0.5,-0.5,-0.5, 1.0,-0.5,-0.5,-0.5, 1.0/
*
* GAUSS-LOBATTO INTEGRATION FOR HEXAGON AND TRIANGLE.
DATA RHL6/
> 1.000000 , 0.000000 , 0.000000 , 0.000000 , 0.000000 , 0.000000,
> 0.000000 , 1.000000 , 0.000000 , 0.000000 , 0.000000 , 0.000000,
> 0.000000 , 0.000000 , 1.000000 , 0.000000 , 0.000000 , 0.000000,
> 0.000000 , 0.000000 , 0.000000 , 1.000000 , 0.000000 , 0.000000,
> 0.000000 , 0.000000 , 0.000000 , 0.000000 , 1.000000 , 0.000000,
> 0.000000 , 0.000000 , 0.000000 , 0.000000 , 0.000000 , 1.000000/
DATA QHL6/
> 1.666667 ,-1.000000 , 0.166667 ,-1.000000 , 0.166667 , 0.000000,
>-1.000000 , 1.666667 ,-1.000000 , 0.166667 , 0.000000 , 0.166667,
> 0.166667 ,-1.000000 , 1.666667 , 0.000000 , 0.166667 ,-1.000000,
>-1.000000 , 0.166667 , 0.000000 , 1.666667 ,-1.000000 , 0.166667,
> 0.166667 , 0.000000 , 0.166667 ,-1.000000 , 1.666667 ,-1.000000,
> 0.000000 , 0.166667 ,-1.000000 , 0.166667 ,-1.000000 , 1.666667/
DATA RTL/
> 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0/
DATA QTL/
> 1.0,-0.5,-0.5,-0.5, 1.0,-0.5,-0.5,-0.5, 1.0/
*----
* PARABOLIC LAGRANGIAN POLYNOMIALS.
*----
DATA EP/
$-0.125000000000,-1.000000000000, 2.500000000000,
$ 1.250000000000, 0.000000000000,-5.000000000000,
$-0.125000000000, 1.000000000000, 2.500000000000/
DATA TP/
$ 0.083333333333, 0.833333333333, 0.083333333333/
DATA RP/
$ 0.125000000000, 0.000000000000,-0.041666666667,
$ 0.000000000000, 0.833333333333, 0.000000000000,
$-0.041666666667, 0.000000000000, 0.125000000000/
DATA VP/
$-1.000000000000, 0.000000000000, 1.000000000000,
$ 1.443375672974,-2.886751345948, 1.443375672974/
DATA HP/
$ 0.083333333333, 0.833333333333, 0.083333333333,
$-0.288675134595, 0.000000000000, 0.288675134595/
* CYLINDRICAL OPTION MATRICES:
DATA TSP/
$-0.083333333333, 0.000000000000, 0.083333333333/
DATA RSP/
$-0.041666666667,-0.041666666667, 0.000000000000,
$-0.041666666667, 0.000000000000, 0.041666666667,
$ 0.000000000000, 0.041666666667, 0.041666666667/
DATA QSP/
$-0.833333333333, 0.833333333333, 0.000000000000,
$ 0.833333333333, 0.000000000000,-0.833333333333,
$ 0.000000000000,-0.833333333333, 0.833333333333/
* GAUSS-LOBATTO (VARIATIONAL COLLOCATION METHOD) MATRICES:
DATA EP1/0.0,-1.0,2.0,1.0,0.0,-4.0,0.0,1.0,2.0/
DATA TP1/
$ 0.166666666667, 0.666666666667, 0.166666666667/
DATA VP1/
$-1.000000000000, 0.0000000000000, 1.000000000000,
$ 1.154700538379,-2.3094010767585, 1.154700538379/
DATA HP1/
$ 0.166666666667, 0.666666666667, 0.166666666667,
$-0.288675134595, 0.000000000000, 0.288675134595/
* CYLINDRICAL GAUSS-LOBATTO (VARIATIONAL COLLOCATION METHOD)
* MATRICES.
DATA TSP1/
$-0.083333333333, 0.000000000000, 0.083333333333/
DATA QSP1/
$-0.666666666667, 0.666666666667, 0.000000000000,
$ 0.666666666667, 0.000000000000,-0.666666666667,
$ 0.000000000000,-0.666666666667, 0.666666666667/
* GAUSS-LEGENDRE (SUPERCONVERGENT) MATRICES:
DATA EP2/
$-0.250000000000,-1.000000000000, 3.000000000000,
$ 1.500000000000, 0.000000000000,-6.000000000000,
$-0.250000000000, 1.000000000000, 3.000000000000/
DATA TP2/
$ 0.000000000000, 1.000000000000, 0.000000000000/
DATA RP2/
$ 0.083333333333, 0.000000000000,-0.083333333333,
$ 0.000000000000, 1.000000000000, 0.000000000000,
$-0.083333333333, 0.000000000000, 0.083333333333/
DATA VP2/
$-1.000000000000, 0.000000000000, 1.000000000000,
$ 1.732050807569,-3.464101615138, 1.732050807569/
DATA HP2/
$ 0.000000000000, 1.000000000000, 0.000000000000,
$-0.288675134595, 0.000000000000, 0.288675134595/
* CYLINDRICAL GAUSS-LEGENDRE (SUPERCONVERGENT) MATRICES:
DATA TSP2/
$-0.083333333333, 0.000000000000, 0.083333333333/
DATA RSP2/
$ 0.000000000000,-0.083333333333, 0.000000000000,
$-0.083333333333, 0.000000000000, 0.083333333333,
$ 0.000000000000, 0.083333333333, 0.000000000000/
DATA QSP2/
$-1.000000000000, 1.000000000000, 0.000000000000,
$ 1.000000000000, 0.000000000000,-1.000000000000,
$ 0.000000000000,-1.000000000000, 1.000000000000/
*----
* CUBIC LAGRANGIAN POLYNOMIALS.
*----
DATA EC/
$-0.125000000000, 0.750000000000, 2.500000000000, -7.000000000000,
$ 0.625000000000,-3.307189138831,-2.500000000000, 13.228756555323,
$ 0.625000000000, 3.307189138831,-2.500000000000,-13.228756555323,
$-0.125000000000,-0.750000000000, 2.500000000000, 7.000000000000/
DATA TC/
$ 0.083333333333, 0.416666666667, 0.416666666667, 0.083333333333/
DATA RC/
$ 0.066666666667, 0.000000000000, 0.000000000000, 0.016666666667,
$ 0.000000000000, 0.416666666667, 0.000000000000, 0.000000000000,
$ 0.000000000000, 0.000000000000, 0.416666666667, 0.000000000000,
$ 0.016666666667, 0.000000000000, 0.000000000000, 0.066666666667/
DATA VC/
$-1.000000000000, 0.000000000000, 0.000000000000,1.000000000000,
$ 1.443375672974,-1.443375672974,-1.443375672974,1.443375672974,
$-1.565247584250, 2.958039891550,-2.958039891550,1.565247584250/
DATA HC/
$ 0.083333333333, 0.416666666667, 0.416666666667, 0.083333333333,
$-0.086602540378,-0.381881307913, 0.381881307913, 0.086602540378,
$ 0.186338998125,-0.186338998125,-0.186338998125, 0.186338998125/
* CYLINDRICAL OPTION MATRICES:
DATA TSC /
$-0.025000000000,-0.110239637961, 0.110239637961, 0.025000000000/
DATA RSC/
$-0.025000000000,-0.015748519709, 0.015748519709, 0.000000000000,
$-0.015748519709,-0.078742598544, 0.000000000000,-0.015748519709,
$ 0.015748519709, 0.000000000000, 0.078742598544, 0.015748519709,
$ 0.000000000000,-0.015748519709, 0.015748519709, 0.025000000000/
DATA QSC/
$-2.000000000000, 2.102396379610,-0.102396379610, 0.000000000000,
$ 2.102396379610,-2.204792759220, 0.000000000000, 0.102396379610,
$-0.102396379610, 0.000000000000, 2.204792759220,-2.102396379610,
$ 0.000000000000, 0.102396379610,-2.102396379610, 2.000000000000/
* GAUSS-LOBATTO (VARIATIONAL COLLOCATION METHOD) MATRICES:
DATA EC1/
$-0.125000000000, 0.250000000000, 2.500000000000, -5.000000000000,
$ 0.625000000000,-2.795084971875,-2.500000000000, 11.180339887499,
$ 0.625000000000, 2.795084971875,-2.500000000000,-11.180339887499,
$-0.125000000000,-0.250000000000, 2.500000000000, 5.000000000000/
DATA TC1/
$ 0.083333333333, 0.416666666667, 0.416666666667, 0.083333333333/
DATA VC1/
$-1.000000000000, 0.000000000000, 0.000000000000,1.000000000000,
$ 1.443375672974,-1.443375672974,-1.443375672974,1.443375672974,
$-1.118033988750, 2.500000000000,-2.500000000000,1.118033988750/
DATA HC1/
$ 0.083333333333, 0.416666666667, 0.416666666667, 0.083333333333,
$-0.144337567297,-0.322748612184, 0.322748612184, 0.144337567297,
$ 0.186338998125,-0.186338998125,-0.186338998125, 0.186338998125/
* CYLINDRICAL GAUSS-LOBATTO (VARIATIONAL COLLOCATION METHOD)
* MATRICES:
DATA TSC1/
$-0.041666666667,-0.093169499062, 0.093169499062, 0.041666666667/
DATA QSC1/
$-1.666666666667, 1.765028323958,-0.098361657292, 0.000000000000,
$ 1.765028323958,-1.863389981250, 0.000000000000, 0.098361657292,
$-0.098361657292, 0.000000000000, 1.863389981250,-1.765028323958,
$ 0.000000000000, 0.098361657292,-1.765028323958, 1.666666666667/
* GAUSS-LEGENDRE (SUPERCONVERGENT) MATRICES:
DATA EC2/
$-0.125000000000, 1.500000000000, 2.500000000000,-10.000000000000,
$ 0.625000000000,-3.952847075210,-2.500000000000, 15.811388300842,
$ 0.625000000000, 3.952847075210,-2.500000000000,-15.811388300842,
$-0.125000000000,-1.500000000000, 2.500000000000, 10.000000000000/
DATA TC2/
$ 0.083333333333, 0.416666666667, 0.416666666667, 0.083333333333/
DATA RC2/
$ 0.041666666667, 0.000000000000, 0.000000000000, 0.041666666667,
$ 0.000000000000, 0.416666666667, 0.000000000000, 0.000000000000,
$ 0.000000000000, 0.000000000000, 0.416666666667, 0.000000000000,
$ 0.041666666667, 0.000000000000, 0.000000000000, 0.041666666667/
DATA VC2/
$-1.000000000000, 0.000000000000, 0.000000000000,1.000000000000,
$ 1.443375672974,-1.443375672974,-1.443375672974,1.443375672974,
$-2.236067977500, 3.535533905933,-3.535533905933,2.236067977500/
DATA HC2/
$ 0.083333333333, 0.416666666667, 0.416666666667, 0.083333333333,
$ 0.000000000000,-0.456435464588, 0.456435464588, 0.000000000000,
$ 0.186338998125,-0.186338998125,-0.186338998125, 0.186338998125/
* CYLINDRICAL GAUSS-LEGENDRE (SUPERCONVERGENT) MATRICES:
DATA TSC2/
$ 0.000000000000,-0.131761569174, 0.131761569174, 0.000000000000/
DATA RSC2/
$ 0.000000000000,-0.032940392293, 0.032940392293, 0.000000000000,
$-0.032940392293,-0.065880784587, 0.000000000000,-0.032940392293,
$ 0.032940392293, 0.000000000000, 0.065880784587, 0.032940392293,
$ 0.000000000000,-0.032940392293, 0.032940392293, 0.000000000000/
DATA QSC2/
$-2.500000000000, 2.567615691737,-0.067615691737, 0.000000000000,
$ 2.567615691737,-2.635231383474, 0.000000000000, 0.067615691737,
$-0.067615691737, 0.000000000000, 2.635231383474,-2.567615691737,
$ 0.000000000000, 0.067615691737,-2.567615691737, 2.500000000000/
*----
* QUARTIC LAGRANGIAN POLYNOMIALS.
*----
DATA EQ/
$ 0.000000000000, 0.750000000000,-1.500000000000,-7.000000000000,
$ 14.000000000000, 0.000000000000,-2.673169155391, 8.166666666667,
$ 10.692676621564,-32.666666666667, 1.000000000000, 0.000000000000,
$-13.333333333333, 0.000000000000,37.333333333333, 0.000000000000,
$ 2.673169155391,8.166666666667,-10.692676621564,-32.666666666667,
$ 0.000000000000,-0.750000000000,-1.500000000000, 7.000000000000,
$ 14.000000000000/
DATA TQ/
$ 0.050000000000, 0.272222222222, 0.355555555556, 0.272222222222,
$ 0.050000000000/
DATA VQ/
$-1.000000000000, 0.00000000000, 0.000000000000, 0.00000000000,
$ 1.000000000000, 1.55884572681,-0.943005439677,-1.23168057427,
$-0.943005439677, 1.55884572681,-1.565247584250, 2.39095517873,
$ 0.000000000000,-2.39095517873, 1.565247584250, 1.058300524426,
$-2.46936789032 , 2.8221347318 ,-2.46936789032 , 1.058300524426/
DATA HQ/
$ 0.050000000000, 0.272222222222, 0.355555555556, 0.272222222222,
$ 0.050000000000,-0.086602540378,-0.308670986291, 0.000000000000,
$ 0.308670986291, 0.086602540378, 0.111803398875, 0.086958199125,
$-0.397523196000, 0.086958199125, 0.111803398875,-0.132287565553,
$ 0.202072594216, 0.000000000000,-0.202072594216, 0.132287565553/
* CYLINDRICAL GAUSS-LOBATTO (VARIATIONAL COLLOCATION METHOD)
* MATRICES:
DATA TSQ/
$-0.025000000000,-0.089105638513, 0.000000000000, 0.089105638513,
$ 0.025000000000/
DATA QSQ/
$-3.000000000000, 3.237234826568,-0.266666666667, 0.029431840099,
$ 0.000000000000, 3.237234826568,-4.158263130608, 0.950460144139,
$ 0.000000000000,-0.029431840099,-0.266666666667, 0.950460144139,
$ 0.000000000000,-0.950460144139, 0.266666666667, 0.029431840099,
$ 0.000000000000,-0.950460144139, 4.158263130608,-3.237234826568,
$ 0.000000000000,-0.029431840099, 0.266666666667,-3.237234826568,
$ 3.000000000000/
*
LC=IELEM+1
IF((IELEM.EQ.1).AND.(ICOL.EQ.1)) THEN
* LL2
HTYPE='LINEAR LAGRANGIAN POLYNOMIALS'
DO 20 I=1,LC
T(I)=TL(I)
TS(I)=TSL(I)
DO 10 J=1,LC
R((J-1)*LC+I)=RL(I,J)
RS((J-1)*LC+I)=RSL(I,J)
QS((J-1)*LC+I)=QSL(I,J)
R1DQ((J-1)*LC+I)=RLQ(I,J)
R1DR((J-1)*LC+I)=RLR(I,J)
E((J-1)*LC+I)=EL(I,J)
10 CONTINUE
20 CONTINUE
V(1)=-1.0
V(2)=1.0
H(1)=0.5
H(2)=0.5
DO 40 I=1,6
DO 30 J=1,6
RH(I,J)=RHA6(I,J)
QH(I,J)=QHA6(I,J)
30 CONTINUE
40 CONTINUE
DO 60 I=1,3
DO 50 J=1,3
RT(I,J)=RTA(I,J)*SQRT(3.0)/24.0
QT(I,J)=QTA(I,J)/SQRT(3.0)
50 CONTINUE
60 CONTINUE
ELSE IF((IELEM.EQ.1).AND.(ICOL.EQ.2)) THEN
* LL2$
HTYPE='FINITE DIFFERENCES'
DO 80 I=1,LC
T(I)=TL(I)
TS(I)=TSL1(I)
DO 70 J=1,LC
R((J-1)*LC+I)=0.0
RS((J-1)*LC+I)=0.0
QS((J-1)*LC+I)=QSL(I,J)
R1DQ((J-1)*LC+I)=RL1Q(I,J)
R1DR((J-1)*LC+I)=RL1R(I,J)
E((J-1)*LC+I)=EL(I,J)
70 CONTINUE
R((I-1)*LC+I)=TL(I)
RS((I-1)*LC+I)=TSL1(I)
80 CONTINUE
V(1)=-1.0
V(2)=1.0
H(1)=0.5
H(2)=0.5
DO 100 I=1,6
DO 90 J=1,6
RH(I,J)=RHL6(I,J)*SQRT(3.0)/4.0
QH(I,J)=QHL6(I,J)*SQRT(3.0)
90 CONTINUE
100 CONTINUE
DO 120 I=1,3
DO 110 J=1,3
RT(I,J)=RTL(I,J)*SQRT(3.0)/12.0
QT(I,J)=QTL(I,J)/SQRT(3.0)
110 CONTINUE
120 CONTINUE
ELSE IF((IELEM.EQ.1).AND.(ICOL.EQ.3)) THEN
* LL2#
HTYPE='SUPERCONVERGENT LINEAR POLYNOMIALS'
DO 140 I=1,LC
T(I)=TL(I)
TS(I)=TSL2(I)
DO 130 J=1,LC
R((J-1)*LC+I)=RL2(I,J)
RS((J-1)*LC+I)=RSL2(I,J)
QS((J-1)*LC+I)=QSL(I,J)
R1DQ((J-1)*LC+I)=RL2Q(I,J)
R1DR((J-1)*LC+I)=RL2R(I,J)
E((J-1)*LC+I)=EL(I,J)
130 CONTINUE
140 CONTINUE
V(1)=-1.0
V(2)=1.0
H(1)=0.5
H(2)=0.5
ELSE IF((IELEM.EQ.2).AND.(ICOL.EQ.1)) THEN
* PL3
HTYPE='PARABOLIC LAGRANGIAN POLYNOMIALS'
DO 170 I=1,LC
T(I)=TP(I)
TS(I)=TSP(I)
DO 150 J=1,LC-1
V((J-1)*LC+I)=VP(I,J)
H((J-1)*LC+I)=HP(I,J)
150 CONTINUE
DO 160 J=1,LC
R((J-1)*LC+I)=RP(I,J)
RS((J-1)*LC+I)=RSP(I,J)
QS((J-1)*LC+I)=QSP(I,J)
E((J-1)*LC+I)=EP(I,J)
160 CONTINUE
170 CONTINUE
ELSE IF((IELEM.EQ.2).AND.(ICOL.EQ.2)) THEN
* PL3$
HTYPE='PARABOLIC COLLOCATION METHOD'
DO 200 I=1,LC
T(I)=TP1(I)
TS(I)=TSP1(I)
DO 180 J=1,LC-1
V((J-1)*LC+I)=VP1(I,J)
H((J-1)*LC+I)=HP1(I,J)
180 CONTINUE
DO 190 J=1,LC
R((J-1)*LC+I)=0.0
RS((J-1)*LC+I)=0.0
QS((J-1)*LC+I)=QSP1(I,J)
E((J-1)*LC+I)=EP1(I,J)
190 CONTINUE
R((I-1)*LC+I)=TP1(I)
RS((I-1)*LC+I)=TSP1(I)
200 CONTINUE
ELSE IF((IELEM.EQ.2).AND.(ICOL.EQ.3)) THEN
* PL3#
HTYPE='PARABOLIC SUPERCONVERGENT POLYNOMIALS'
DO 230 I=1,LC
T(I)=TP2(I)
TS(I)=TSP2(I)
DO 210 J=1,LC-1
V((J-1)*LC+I)=VP2(I,J)
H((J-1)*LC+I)=HP2(I,J)
210 CONTINUE
DO 220 J=1,LC
R((J-1)*LC+I)=RP2(I,J)
RS((J-1)*LC+I)=RSP2(I,J)
QS((J-1)*LC+I)=QSP2(I,J)
E((J-1)*LC+I)=EP2(I,J)
220 CONTINUE
230 CONTINUE
ELSE IF((IELEM.EQ.3).AND.(ICOL.EQ.1)) THEN
* CL4
HTYPE='CUBIC LAGRANGIAN POLYNOMIALS'
DO 260 I=1,LC
T(I)=TC(I)
TS(I)=TSC(I)
DO 240 J=1,LC-1
V((J-1)*LC+I)=VC(I,J)
H((J-1)*LC+I)=HC(I,J)
240 CONTINUE
DO 250 J=1,LC
R((J-1)*LC+I)=RC(I,J)
RS((J-1)*LC+I)=RSC(I,J)
QS((J-1)*LC+I)=QSC(I,J)
E((J-1)*LC+I)=EC(I,J)
250 CONTINUE
260 CONTINUE
ELSE IF((IELEM.EQ.3).AND.(ICOL.EQ.2)) THEN
* CL4$
HTYPE='CUBIC COLLOCATION METHOD'
DO 290 I=1,LC
T(I)=TC1(I)
TS(I)=TSC1(I)
DO 270 J=1,LC-1
V((J-1)*LC+I)=VC1(I,J)
H((J-1)*LC+I)=HC1(I,J)
270 CONTINUE
DO 280 J=1,LC
R((J-1)*LC+I)=0.0
RS((J-1)*LC+I)=0.0
QS((J-1)*LC+I)=QSC1(I,J)
E((J-1)*LC+I)=EC1(I,J)
280 CONTINUE
R((I-1)*LC+I)=TC1(I)
RS((I-1)*LC+I)=TSC1(I)
290 CONTINUE
ELSE IF((IELEM.EQ.3).AND.(ICOL.EQ.3)) THEN
* CL4#
HTYPE='SUPERCONVERGENT CUBIC POLYNOMIALS'
DO 320 I=1,LC
T(I)=TC2(I)
TS(I)=TSC2(I)
DO 300 J=1,LC-1
V((J-1)*LC+I)=VC2(I,J)
H((J-1)*LC+I)=HC2(I,J)
300 CONTINUE
DO 310 J=1,LC
R((J-1)*LC+I)=RC2(I,J)
RS((J-1)*LC+I)=RSC2(I,J)
QS((J-1)*LC+I)=QSC2(I,J)
E((J-1)*LC+I)=EC2(I,J)
310 CONTINUE
320 CONTINUE
ELSE IF((IELEM.EQ.4).AND.(ICOL.EQ.2)) THEN
* QL5$
HTYPE='QUARTIC COLLOCATION METHOD'
DO 350 I=1,LC
T(I)=TQ(I)
TS(I)=TSQ(I)
DO 330 J=1,LC-1
V((J-1)*LC+I)=VQ(I,J)
H((J-1)*LC+I)=HQ(I,J)
330 CONTINUE
DO 340 J=1,LC
R((J-1)*LC+I)=0.0
RS((J-1)*LC+I)=0.0
QS((J-1)*LC+I)=QSQ(I,J)
E((J-1)*LC+I)=EQ(I,J)
340 CONTINUE
R((I-1)*LC+I)=TQ(I)
RS((I-1)*LC+I)=TSQ(I)
350 CONTINUE
ELSE
CALL XABORT('BIVCOL: TYPE OF FINITE ELEMENT NOT AVAILABLE.')
ENDIF
*----
* COMPUTE THE CARTESIAN STIFFNESS MATRIX FROM THE TENSORIAL PRODUCT OF
* TWO NODAL COUPLING MATRICES.
*----
DO 380 I=1,LC
DO 370 J=1,LC
DSUM=0.0D0
DO 360 K=1,LC-1
DSUM=DSUM+V((K-1)*LC+I)*V((K-1)*LC+J)
360 CONTINUE
Q((J-1)*LC+I)=REAL(DSUM)
370 CONTINUE
380 CONTINUE
IF(IMPX.GT.0) WRITE (6,'(/9H BIVCOL: ,A40)') HTYPE
*----
* SAVE THE UNIT MATRICES ON LCM.
*----
CALL LCMSIX(IPTRK,'BIVCOL',1)
CALL LCMPUT(IPTRK,'T',LC,2,T)
CALL LCMPUT(IPTRK,'TS',LC,2,TS)
CALL LCMPUT(IPTRK,'R',LC*LC,2,R)
CALL LCMPUT(IPTRK,'RS',LC*LC,2,RS)
IF(IELEM.EQ.1) THEN
CALL LCMPUT(IPTRK,'RSH1',LC*LC,2,R1DQ)
CALL LCMPUT(IPTRK,'RSH2',LC*LC,2,R1DR)
ENDIF
CALL LCMPUT(IPTRK,'Q',LC*LC,2,Q)
CALL LCMPUT(IPTRK,'QS',LC*LC,2,QS)
CALL LCMPUT(IPTRK,'V',LC*(LC-1),2,V)
CALL LCMPUT(IPTRK,'H',LC*(LC-1),2,H)
CALL LCMPUT(IPTRK,'E',LC*LC,2,E)
IF((IELEM.EQ.1).AND.(ICOL.LE.2)) THEN
CALL LCMPUT(IPTRK,'RH',36,2,RH)
CALL LCMPUT(IPTRK,'QH',36,2,QH)
CALL LCMPUT(IPTRK,'RT',9,2,RT)
CALL LCMPUT(IPTRK,'QT',9,2,QT)
ENDIF
CALL LCMSIX(IPTRK,' ',2)
RETURN
END
|