summaryrefslogtreecommitdiff
path: root/Trivac/src/BIVA05.f
blob: 41997f92949cd38cdf659e8f736ce386d299e985 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
*DECK BIVA05
      SUBROUTINE BIVA05(ITY,SGD,IELEM,NBLOS,LL4,NBMIX,IIMAX,SIDE,MAT,
     1 IPERT,KN,QFR,MU,LC,R,V,H,SYS)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of a within-group (leakage and removal) or out-of-group
* system matrix in a Thomas-Raviart-Schneider (dual) finite element
* diffusion approximation (hexagonal geometry).
*
*Copyright:
* Copyright (C) 2006 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* ITY     type of assembly: =0: leakage-removal matrix assembly;
*         =1: cross section matrix assembly.
* SGD     nuclear properties. SGD(:,1) and SGD(:,2) are diffusion
*         coefficients. SGD(:,3) are removal macroscopic cross sections.
* IELEM   degree of the Lagrangian finite elements: =1 (linear);
*         =2 (parabolic); =3 (cubic); =4 (quartic).
* NBLOS   number of lozenges per direction, taking into account
*         mesh-splitting.
* LL4     number of unknowns per group in BIVAC.
* NBMIX   number of macro-mixtures.
* IIMAX   allocated dimension of array SYS.
* SIDE    side of the hexagons.
* MAT     mixture index per lozenge.
* IPERT   mixture permutation index.
* KN      element-ordered unknown list.
* QFR     element-ordered boundary conditions.
* MU      indices used with compressed diagonal storage mode matrix SYS.
* LC      order of the unit matrices.
* R       Cartesian mass matrix.
* V       nodal coupling matrix.
* H       Piolat (hexagonal) coupling matrix.
*
*Parameters: output
* SYS     system matrix.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER ITY,IELEM,NBLOS,LL4,NBMIX,IIMAX,MAT(3,NBLOS),IPERT(NBLOS),
     1 KN(NBLOS,4+6*IELEM*(IELEM+1)),MU(LL4),LC
      REAL SGD(NBMIX,3),SIDE,QFR(NBLOS,6),R(LC,LC),V(LC,LC-1),
     1 H(LC,LC-1),SYS(IIMAX)
*----
*  LOCAL VARIABLES
*----
      PARAMETER(MAXIEL=3)
      DOUBLE PRECISION CTRAN(MAXIEL*(MAXIEL+1),MAXIEL*(MAXIEL+1))
*----
*  ASSEMBLY OF A SYSTEM MATRIX.
*----
      TTTT=0.5*SQRT(3.0)*SIDE*SIDE
      IF(IELEM.GT.MAXIEL) CALL XABORT('BIVA05: MAXIEL OVERFLOW.')
      IF(ITY.EQ.0) THEN
*        COMPUTE THE TRANVERSE COUPLING PIOLAT UNIT MATRIX
         CTRAN(:MAXIEL*(MAXIEL+1),:MAXIEL*(MAXIEL+1))=0.0D0
         CNORM=SIDE*SIDE/SQRT(3.0)
         I=0
         DO 22 JS=1,IELEM
         DO 21 JT=1,IELEM+1
         J=0
         I=I+1
         SSS=1.0
         DO 20 IT=1,IELEM
         DO 10 IS=1,IELEM+1
         J=J+1
         CTRAN(I,J)=SSS*CNORM*H(IS,JS)*H(JT,IT)
   10    CONTINUE
         SSS=-SSS
   20    CONTINUE
   21    CONTINUE
   22    CONTINUE
*
*        LEAKAGE-REMOVAL SYSTEM MATRIX ASSEMBLY
         NELEM=IELEM*(IELEM+1)
         COEF=2.0*SIDE*SIDE/SQRT(3.0)
         NUM=0
         DO 70 KEL=1,NBLOS
         IF(IPERT(KEL).EQ.0) GO TO 70
         IBM=MAT(1,IPERT(KEL))
         IF(IBM.EQ.0) GO TO 70
         NUM=NUM+1
         DINV=1.0/SGD(IBM,1)
         SIG=SGD(IBM,3)
         DO 43 K4=0,1
         DO 42 K3=0,IELEM-1
         DO 41 K2=1,IELEM+1
         KNW1=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K2)
         KNX1=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K2)
         KNY1=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K2)
         INW1=ABS(KNW1)
         INX1=ABS(KNX1)
         INY1=ABS(KNY1)
         DO 30 K1=1,IELEM+1
         KNW2=KN(NUM,4+K4*NELEM+K3*(IELEM+1)+K1)
         KNX2=KN(NUM,4+(K4+2)*NELEM+K3*(IELEM+1)+K1)
         KNY2=KN(NUM,4+(K4+4)*NELEM+K3*(IELEM+1)+K1)
         INW2=ABS(KNW2)
         INX2=ABS(KNX2)
         INY2=ABS(KNY2)
         IF((KNW2.NE.0).AND.(KNW1.NE.0).AND.(INW1.GE.INW2)) THEN
            L=MU(INW1)-INW1+INW2
            SG=REAL(SIGN(1,KNW1)*SIGN(1,KNW2))
            SYS(L)=SYS(L)-SG*COEF*DINV*R(K2,K1)
            IF(INW1.EQ.INW2) THEN
              IF((K1.EQ.1).AND.(K4.EQ.0)) SYS(L)=SYS(L)-QFR(NUM,1)
              IF((K1.EQ.IELEM+1).AND.(K4.EQ.1)) SYS(L)=SYS(L)-QFR(NUM,2)
            ENDIF
         ENDIF
         IF((KNX2.NE.0).AND.(KNX1.NE.0).AND.(INX1.GE.INX2)) THEN
            L=MU(INX1)-INX1+INX2
            SG=REAL(SIGN(1,KNX1)*SIGN(1,KNX2))
            SYS(L)=SYS(L)-SG*COEF*DINV*R(K2,K1)
            IF(INX1.EQ.INX2) THEN
              IF((K1.EQ.1).AND.(K4.EQ.0)) SYS(L)=SYS(L)-QFR(NUM,3)
              IF((K1.EQ.IELEM+1).AND.(K4.EQ.1)) SYS(L)=SYS(L)-QFR(NUM,4)
            ENDIF
         ENDIF
         IF((KNY2.NE.0).AND.(KNY1.NE.0).AND.(INY1.GE.INY2)) THEN
            L=MU(INY1)-INY1+INY2
            SG=REAL(SIGN(1,KNY1)*SIGN(1,KNY2))
            SYS(L)=SYS(L)-SG*COEF*DINV*R(K2,K1)
            IF(INY1.EQ.INY2) THEN
              IF((K1.EQ.1).AND.(K4.EQ.0)) SYS(L)=SYS(L)-QFR(NUM,5)
              IF((K1.EQ.IELEM+1).AND.(K4.EQ.1)) SYS(L)=SYS(L)-QFR(NUM,6)
            ENDIF
         ENDIF
   30    CONTINUE
         DO 40 K1=0,IELEM-1
         IF(V(K2,K1+1).EQ.0.0) GO TO 40
         IF(K4.EQ.0) THEN
            SSS=(-1.0)**K1
            JND1=KN(NUM,1)+K3*IELEM+K1
            JND2=KN(NUM,2)+K3*IELEM+K1
            JND3=KN(NUM,3)+K3*IELEM+K1
         ELSE
            SSS=1.0
            JND1=KN(NUM,2)+K1*IELEM+K3
            JND2=KN(NUM,3)+K1*IELEM+K3
            JND3=KN(NUM,4)+K1*IELEM+K3
         ENDIF
         IF(KNW1.NE.0) THEN
            L=MU(JND1)-JND1+INW1
            IF(JND1.LT.INW1) L=MU(INW1)-INW1+JND1
            SG=REAL(SIGN(1,KNW1))
            SYS(L)=SYS(L)+SG*SSS*SIDE*V(K2,K1+1)
         ENDIF
         IF(KNX1.NE.0) THEN
            L=MU(JND2)-JND2+INX1
            IF(JND2.LT.INX1) L=MU(INX1)-INX1+JND2
            SG=REAL(SIGN(1,KNX1))
            SYS(L)=SYS(L)+SG*SSS*SIDE*V(K2,K1+1)
         ENDIF
         IF(KNY1.NE.0) THEN
            L=MU(JND3)-JND3+INY1
            IF(JND3.LT.INY1) L=MU(INY1)-INY1+JND3
            SG=REAL(SIGN(1,KNY1))
            SYS(L)=SYS(L)+SG*SSS*SIDE*V(K2,K1+1)
         ENDIF
   40    CONTINUE
   41    CONTINUE
   42    CONTINUE
   43    CONTINUE
         ITRS=0
         DO I=1,NBLOS
            IF(KN(I,1).EQ.KN(NUM,4)) THEN
               ITRS=I
               GO TO 45
            ENDIF
         ENDDO
         CALL XABORT('BIVA05: ITRS FAILURE.')
   45    DO 55 I=1,NELEM
         KNW1=KN(ITRS,4+I)
         KNX1=KN(NUM,4+2*NELEM+I)
         KNY1=KN(NUM,4+4*NELEM+I)
         INW1=ABS(KNW1)
         INX1=ABS(KNX1)
         INY1=ABS(KNY1)
         DO 50 J=1,NELEM
         KNW2=KN(NUM,4+NELEM+J)
         KNX2=KN(NUM,4+3*NELEM+J)
         KNY2=KN(NUM,4+5*NELEM+J)
         INW2=ABS(KNW2)
         INX2=ABS(KNX2)
         INY2=ABS(KNY2)
         IF((KNY2.NE.0).AND.(KNW1.NE.0).AND.(INW1.LT.INY2)) THEN
            L=MU(INY2)-INY2+INW1
            SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2))
            SYS(L)=SYS(L)-SG*DINV*REAL(CTRAN(I,J)) ! y w
         ELSE IF((KNY2.NE.0).AND.(KNW1.NE.0).AND.(INW1.GT.INY2)) THEN
            L=MU(INW1)-INW1+INY2
            SG=REAL(SIGN(1,KNW1)*SIGN(1,KNY2))
            SYS(L)=SYS(L)-SG*DINV*REAL(CTRAN(I,J)) ! w y
         ENDIF
         IF((KNW2.NE.0).AND.(KNX1.NE.0).AND.(INW2.LT.INX1)) THEN
            L=MU(INX1)-INX1+INW2
            SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2))
            SYS(L)=SYS(L)-SG*DINV*REAL(CTRAN(I,J)) ! x w
         ELSE IF((KNW2.NE.0).AND.(KNX1.NE.0).AND.(INW2.GT.INX1)) THEN
            L=MU(INW2)-INW2+INX1
            SG=REAL(SIGN(1,KNX1)*SIGN(1,KNW2))
            SYS(L)=SYS(L)-SG*DINV*REAL(CTRAN(I,J)) ! w x
         ENDIF
         IF((KNX2.NE.0).AND.(KNY1.NE.0).AND.(INX2.LT.INY1)) THEN
            L=MU(INY1)-INY1+INX2
            SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2))
            SYS(L)=SYS(L)-SG*DINV*REAL(CTRAN(I,J)) ! y x
         ELSE IF((KNX2.NE.0).AND.(KNY1.NE.0).AND.(INX2.GT.INY1)) THEN
            L=MU(INX2)-INX2+INY1
            SG=REAL(SIGN(1,KNY1)*SIGN(1,KNX2))
            SYS(L)=SYS(L)-SG*DINV*REAL(CTRAN(I,J)) ! x y
         ENDIF
   50    CONTINUE
   55    CONTINUE
         DO 65 K2=0,IELEM-1
         DO 60 K1=0,IELEM-1
         JND1=KN(NUM,1)+K2*IELEM+K1
         JND2=KN(NUM,2)+K2*IELEM+K1
         JND3=KN(NUM,3)+K2*IELEM+K1
         L=MU(JND1)
         SYS(L)=SYS(L)+TTTT*SIG
         L=MU(JND2)
         SYS(L)=SYS(L)+TTTT*SIG
         L=MU(JND3)
         SYS(L)=SYS(L)+TTTT*SIG
   60    CONTINUE
   65    CONTINUE
   70    CONTINUE
      ELSE
*        CROSS SECTION SYSTEM MATRIX ASSEMBLY
         NUM=0
         DO 90 KEL=1,NBLOS
         IF(IPERT(KEL).EQ.0) GO TO 90
         IBM=MAT(1,IPERT(KEL))
         IF(IBM.EQ.0) GO TO 90
         NUM=NUM+1
         SIG=SGD(IBM,1)
         DO 85 K2=0,IELEM-1
         DO 80 K1=0,IELEM-1
         JND1=KN(NUM,1)+K2*IELEM+K1
         JND2=KN(NUM,2)+K2*IELEM+K1
         JND3=KN(NUM,3)+K2*IELEM+K1
         L=MU(JND1)
         SYS(L)=SYS(L)+TTTT*SIG
         L=MU(JND2)
         SYS(L)=SYS(L)+TTTT*SIG
         L=MU(JND3)
         SYS(L)=SYS(L)+TTTT*SIG
   80    CONTINUE
   85    CONTINUE
   90    CONTINUE
      ENDIF
      RETURN
      END