1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
*DECK BIVA02
SUBROUTINE BIVA02(ITY,SGD,CYLIND,IELEM,ICOL,NREG,LL4,NBMIX,IIMAX,
1 XX,YY,DD,MAT,KN,QFR,VOL,MU,LC,R,V,SYS)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of a within-group (leakage and removal) or out-of-group
* system matrix in mixed-dual finite element diffusion approximation
* (Cartesian geometry).
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* ITY type of assembly: =0: leakage-removal matrix assembly;
* =1: cross section matrix assembly.
* SGD nuclear properties. SGD(:,1) and SGD(:,2) are diffusion
* coefficients. SGD(:,3) are removal macroscopic cross sections.
* CYLIND cylinderization flag (=.true. for cylindrical geometry).
* IELEM degree of the Lagrangian finite elements: =1 (linear);
* =2 (parabolic); =3 (cubic); =4 (quartic).
* ICOL type of quadrature: =1 (analytical integration);
* =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
* NREG number of elements in BIVAC.
* LL4 number of unknowns per group in BIVAC.
* NBMIX number of macro-mixtures.
* IIMAX allocated dimension of array SYS.
* XX X-directed mesh spacings.
* YY Y-directed mesh spacings.
* DD value used used with a cylindrical geometry.
* MAT mixture index per region.
* KN element-ordered unknown list.
* QFR element-ordered boundary conditions.
* VOL volume of regions.
* MU indices used with compressed diagonal storage mode matrix SYS.
* LC number of polynomials in a complete 1-D basis.
* R cartesian mass matrix.
* V nodal coupling matrix.
*
*Parameters: output
* SYS system matrix.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER ITY,IELEM,ICOL,NREG,LL4,NBMIX,IIMAX,MAT(NREG),KN(5*NREG),
1 MU(LL4),LC
REAL SGD(NBMIX,3),XX(NREG),YY(NREG),DD(NREG),QFR(4*NREG),
1 VOL(NREG),R(LC,LC),V(LC,LC-1),SYS(IIMAX)
LOGICAL CYLIND
*----
* LOCAL VARIABLES
*----
REAL QQ(5,5)
*
IF((CYLIND).AND.((IELEM.GT.1).OR.(ICOL.NE.2)))
1 CALL XABORT('BIVA02: TYPE OF DISCRETIZATION NOT IMPLEMENTED.')
*----
* ASSEMBLY OF A SYSTEM MATRIX.
*----
IF(ITY.EQ.0) THEN
* LEAKAGE-REMOVAL SYSTEM MATRIX ASSEMBLY.
DO 12 I0=1,IELEM
DO 11 J0=1,IELEM
QQ(I0,J0)=0.0
DO 10 K0=2,IELEM
QQ(I0,J0)=QQ(I0,J0)+V(K0,I0)*V(K0,J0)/R(K0,K0)
10 CONTINUE
11 CONTINUE
12 CONTINUE
NUM1=0
NUM2=0
DO 80 K=1,NREG
L=MAT(K)
IF(L.EQ.0) GO TO 80
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 70
DX=XX(K)
DY=YY(K)
IF(CYLIND) THEN
DIN=1.0-0.5*DX/DD(K)
DOT=1.0+0.5*DX/DD(K)
ELSE
DIN=1.0
DOT=1.0
ENDIF
*
DO 60 I0=1,IELEM
INX1=ABS(KN(NUM1+2))+I0-1
INX2=ABS(KN(NUM1+3))+I0-1
INY1=ABS(KN(NUM1+4))+I0-1
INY2=ABS(KN(NUM1+5))+I0-1
DO 50 J0=1,IELEM
JND1=KN(NUM1+1)+(I0-1)*IELEM+J0-1
KEY=MU(JND1)
SYS(KEY)=SYS(KEY)+VOL0*SGD(L,3)
DO 20 K0=1,J0
IF(QQ(J0,K0).EQ.0.0) GO TO 20
KND1=KN(NUM1+1)+(I0-1)*IELEM+K0-1
KEY=MU(JND1)-JND1+KND1
SYS(KEY)=SYS(KEY)+VOL0*QQ(J0,K0)*SGD(L,1)/(DX*DX)
20 CONTINUE
IF(KN(NUM1+2).NE.0) THEN
IF(JND1.GT.INX1) KEY=MU(JND1)-JND1+INX1
IF(JND1.LT.INX1) KEY=MU(INX1)-INX1+JND1
SG=REAL(SIGN(1,KN(NUM1+2)))
SYS(KEY)=SYS(KEY)+SG*(VOL0/DX)*DIN*V(1,J0)
ENDIF
IF(KN(NUM1+3).NE.0) THEN
IF(INX2.GT.JND1) KEY=MU(INX2)-INX2+JND1
IF(INX2.LT.JND1) KEY=MU(JND1)-JND1+INX2
SG=REAL(SIGN(1,KN(NUM1+3)))
SYS(KEY)=SYS(KEY)+SG*(VOL0/DX)*DOT*V(IELEM+1,J0)
ENDIF
JND1=KN(NUM1+1)+(J0-1)*IELEM+I0-1
DO 30 K0=1,J0
IF(QQ(J0,K0).EQ.0.0) GO TO 30
KND1=KN(NUM1+1)+(K0-1)*IELEM+I0-1
KEY=MU(JND1)-JND1+KND1
SYS(KEY)=SYS(KEY)+VOL0*QQ(J0,K0)*SGD(L,2)/(DY*DY)
30 CONTINUE
IF(KN(NUM1+4).NE.0) THEN
IF(JND1.GT.INY1) KEY=MU(JND1)-JND1+INY1
IF(JND1.LT.INY1) KEY=MU(INY1)-INY1+JND1
SG=REAL(SIGN(1,KN(NUM1+4)))
SYS(KEY)=SYS(KEY)+SG*(VOL0/DY)*V(1,J0)
ENDIF
IF(KN(NUM1+5).NE.0) THEN
IF(INY2.GT.JND1) KEY=MU(INY2)-INY2+JND1
IF(INY2.LT.JND1) KEY=MU(JND1)-JND1+INY2
SG=REAL(SIGN(1,KN(NUM1+5)))
SYS(KEY)=SYS(KEY)+SG*(VOL0/DY)*V(IELEM+1,J0)
ENDIF
50 CONTINUE
IF(KN(NUM1+2).NE.0) THEN
KEY=MU(INX1)
SYS(KEY)=SYS(KEY)-DIN*(VOL0*R(1,1)/SGD(L,1)+QFR(NUM2+1))
ENDIF
IF(KN(NUM1+3).NE.0) THEN
KEY=MU(INX2)
SYS(KEY)=SYS(KEY)-DOT*(VOL0*R(IELEM+1,IELEM+1)/SGD(L,1)
1 +QFR(NUM2+2))
ENDIF
IF(KN(NUM1+4).NE.0) THEN
KEY=MU(INY1)
SYS(KEY)=SYS(KEY)-VOL0*R(1,1)/SGD(L,2)-QFR(NUM2+3)
ENDIF
IF(KN(NUM1+5).NE.0) THEN
KEY=MU(INY2)
SYS(KEY)=SYS(KEY)-VOL0*R(IELEM+1,IELEM+1)/SGD(L,2)
1 -QFR(NUM2+4)
ENDIF
IF(ICOL.NE.2) THEN
IF((KN(NUM1+2).NE.0).AND.(KN(NUM1+3).NE.0)) THEN
IF(INX2.GT.INX1) KEY=MU(INX2)-INX2+INX1
IF(INX2.LE.INX1) KEY=MU(INX1)-INX1+INX2
SG=REAL(SIGN(1,KN(NUM1+2))*SIGN(1,KN(NUM1+3)))
IF(INX1.EQ.INX2) SG=2.0*SG
SYS(KEY)=SYS(KEY)-SG*VOL0*R(IELEM+1,1)/SGD(L,1)
ENDIF
IF((KN(NUM1+4).NE.0).AND.(KN(NUM1+5).NE.0)) THEN
IF(INY2.GT.INY1) KEY=MU(INY2)-INY2+INY1
IF(INY2.LE.INY1) KEY=MU(INY1)-INY1+INY2
SG=REAL(SIGN(1,KN(NUM1+4))*SIGN(1,KN(NUM1+5)))
IF(INY1.EQ.INY2) SG=2.0*SG
SYS(KEY)=SYS(KEY)-SG*VOL0*R(IELEM+1,1)/SGD(L,2)
ENDIF
ENDIF
60 CONTINUE
70 NUM1=NUM1+5
NUM2=NUM2+4
80 CONTINUE
ELSE
* CROSS SECTION SYSTEM MATRIX ASSEMBLY. COMPONENTS WITH 1E-10
* FACTORS ARE INTRODUCED TO MAKE THE MATRIX INVERTIBLE.
NUM1=0
DO 110 K=1,NREG
L=MAT(K)
IF(L.EQ.0) GO TO 110
VOL0=VOL(K)
IF(VOL0.EQ.0.0) GO TO 100
DO 95 I0=1,IELEM
INX1=ABS(KN(NUM1+2))+I0-1
INX2=ABS(KN(NUM1+3))+I0-1
INY1=ABS(KN(NUM1+4))+I0-1
INY2=ABS(KN(NUM1+5))+I0-1
IF(KN(NUM1+2).NE.0) SYS(MU(INX1))=SYS(MU(INX1))+1.0E-30
IF(KN(NUM1+3).NE.0) SYS(MU(INX2))=SYS(MU(INX2))+1.0E-30
IF(KN(NUM1+4).NE.0) SYS(MU(INY1))=SYS(MU(INY1))+1.0E-30
IF(KN(NUM1+5).NE.0) SYS(MU(INY2))=SYS(MU(INY2))+1.0E-30
DO 90 J0=1,IELEM
JND1=KN(NUM1+1)+(I0-1)*IELEM+J0-1
KEY=MU(JND1)
SYS(KEY)=SYS(KEY)+VOL0*SGD(L,1)
90 CONTINUE
95 CONTINUE
100 NUM1=NUM1+5
110 CONTINUE
ENDIF
RETURN
END
|