summaryrefslogtreecommitdiff
path: root/Trivac/src/BIVA02.f
blob: da999ea4d8896f44821206b4a8088c718df70774 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
*DECK BIVA02
      SUBROUTINE BIVA02(ITY,SGD,CYLIND,IELEM,ICOL,NREG,LL4,NBMIX,IIMAX,
     1 XX,YY,DD,MAT,KN,QFR,VOL,MU,LC,R,V,SYS)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of a within-group (leakage and removal) or out-of-group
* system matrix in mixed-dual finite element diffusion approximation
* (Cartesian geometry).
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* ITY     type of assembly: =0: leakage-removal matrix assembly;
*         =1: cross section matrix assembly.
* SGD     nuclear properties. SGD(:,1) and SGD(:,2) are diffusion
*         coefficients. SGD(:,3) are removal macroscopic cross sections.
* CYLIND  cylinderization flag (=.true. for cylindrical geometry).
* IELEM   degree of the Lagrangian finite elements: =1 (linear);
*         =2 (parabolic); =3 (cubic); =4 (quartic).
* ICOL    type of quadrature: =1 (analytical integration);
*         =2 (Gauss-Lobatto); =3 (Gauss-Legendre).
* NREG    number of elements in BIVAC.
* LL4     number of unknowns per group in BIVAC.
* NBMIX   number of macro-mixtures.
* IIMAX   allocated dimension of array SYS.
* XX      X-directed mesh spacings.
* YY      Y-directed mesh spacings.
* DD      value used used with a cylindrical geometry.
* MAT     mixture index per region.
* KN      element-ordered unknown list.
* QFR     element-ordered boundary conditions.
* VOL     volume of regions.
* MU      indices used with compressed diagonal storage mode matrix SYS.
* LC      number of polynomials in a complete 1-D basis.
* R       cartesian mass matrix.
* V       nodal coupling matrix.
*
*Parameters: output
* SYS     system matrix.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER ITY,IELEM,ICOL,NREG,LL4,NBMIX,IIMAX,MAT(NREG),KN(5*NREG),
     1 MU(LL4),LC
      REAL SGD(NBMIX,3),XX(NREG),YY(NREG),DD(NREG),QFR(4*NREG),
     1 VOL(NREG),R(LC,LC),V(LC,LC-1),SYS(IIMAX)
      LOGICAL CYLIND
*----
*  LOCAL VARIABLES
*----
      REAL QQ(5,5)
*
      IF((CYLIND).AND.((IELEM.GT.1).OR.(ICOL.NE.2)))
     1 CALL XABORT('BIVA02: TYPE OF DISCRETIZATION NOT IMPLEMENTED.')
*----
*  ASSEMBLY OF A SYSTEM MATRIX.
*----
      IF(ITY.EQ.0) THEN
*        LEAKAGE-REMOVAL SYSTEM MATRIX ASSEMBLY.
         DO 12 I0=1,IELEM
         DO 11 J0=1,IELEM
         QQ(I0,J0)=0.0
         DO 10 K0=2,IELEM
         QQ(I0,J0)=QQ(I0,J0)+V(K0,I0)*V(K0,J0)/R(K0,K0)
   10    CONTINUE
   11    CONTINUE
   12    CONTINUE
         NUM1=0
         NUM2=0
         DO 80 K=1,NREG
         L=MAT(K)
         IF(L.EQ.0) GO TO 80
         VOL0=VOL(K)
         IF(VOL0.EQ.0.0) GO TO 70
         DX=XX(K)
         DY=YY(K)
         IF(CYLIND) THEN
            DIN=1.0-0.5*DX/DD(K)
            DOT=1.0+0.5*DX/DD(K)
         ELSE
            DIN=1.0
            DOT=1.0
         ENDIF
*
         DO 60 I0=1,IELEM
         INX1=ABS(KN(NUM1+2))+I0-1
         INX2=ABS(KN(NUM1+3))+I0-1
         INY1=ABS(KN(NUM1+4))+I0-1
         INY2=ABS(KN(NUM1+5))+I0-1
         DO 50 J0=1,IELEM
         JND1=KN(NUM1+1)+(I0-1)*IELEM+J0-1
         KEY=MU(JND1)
         SYS(KEY)=SYS(KEY)+VOL0*SGD(L,3)
         DO 20 K0=1,J0
         IF(QQ(J0,K0).EQ.0.0) GO TO 20
         KND1=KN(NUM1+1)+(I0-1)*IELEM+K0-1
         KEY=MU(JND1)-JND1+KND1
         SYS(KEY)=SYS(KEY)+VOL0*QQ(J0,K0)*SGD(L,1)/(DX*DX)
   20    CONTINUE
         IF(KN(NUM1+2).NE.0) THEN
            IF(JND1.GT.INX1) KEY=MU(JND1)-JND1+INX1
            IF(JND1.LT.INX1) KEY=MU(INX1)-INX1+JND1
            SG=REAL(SIGN(1,KN(NUM1+2)))
            SYS(KEY)=SYS(KEY)+SG*(VOL0/DX)*DIN*V(1,J0)
         ENDIF
         IF(KN(NUM1+3).NE.0) THEN
            IF(INX2.GT.JND1) KEY=MU(INX2)-INX2+JND1
            IF(INX2.LT.JND1) KEY=MU(JND1)-JND1+INX2
            SG=REAL(SIGN(1,KN(NUM1+3)))
            SYS(KEY)=SYS(KEY)+SG*(VOL0/DX)*DOT*V(IELEM+1,J0)
         ENDIF
         JND1=KN(NUM1+1)+(J0-1)*IELEM+I0-1
         DO 30 K0=1,J0
         IF(QQ(J0,K0).EQ.0.0) GO TO 30
         KND1=KN(NUM1+1)+(K0-1)*IELEM+I0-1
         KEY=MU(JND1)-JND1+KND1
         SYS(KEY)=SYS(KEY)+VOL0*QQ(J0,K0)*SGD(L,2)/(DY*DY)
   30    CONTINUE
         IF(KN(NUM1+4).NE.0) THEN
            IF(JND1.GT.INY1) KEY=MU(JND1)-JND1+INY1
            IF(JND1.LT.INY1) KEY=MU(INY1)-INY1+JND1
            SG=REAL(SIGN(1,KN(NUM1+4)))
            SYS(KEY)=SYS(KEY)+SG*(VOL0/DY)*V(1,J0)
         ENDIF
         IF(KN(NUM1+5).NE.0) THEN
            IF(INY2.GT.JND1) KEY=MU(INY2)-INY2+JND1
            IF(INY2.LT.JND1) KEY=MU(JND1)-JND1+INY2
            SG=REAL(SIGN(1,KN(NUM1+5)))
            SYS(KEY)=SYS(KEY)+SG*(VOL0/DY)*V(IELEM+1,J0)
         ENDIF
   50    CONTINUE
         IF(KN(NUM1+2).NE.0) THEN
            KEY=MU(INX1)
            SYS(KEY)=SYS(KEY)-DIN*(VOL0*R(1,1)/SGD(L,1)+QFR(NUM2+1))
         ENDIF
         IF(KN(NUM1+3).NE.0) THEN
            KEY=MU(INX2)
            SYS(KEY)=SYS(KEY)-DOT*(VOL0*R(IELEM+1,IELEM+1)/SGD(L,1)
     1      +QFR(NUM2+2))
         ENDIF
         IF(KN(NUM1+4).NE.0) THEN
            KEY=MU(INY1)
            SYS(KEY)=SYS(KEY)-VOL0*R(1,1)/SGD(L,2)-QFR(NUM2+3)
         ENDIF
         IF(KN(NUM1+5).NE.0) THEN
            KEY=MU(INY2)
            SYS(KEY)=SYS(KEY)-VOL0*R(IELEM+1,IELEM+1)/SGD(L,2)
     1      -QFR(NUM2+4)
         ENDIF
         IF(ICOL.NE.2) THEN
            IF((KN(NUM1+2).NE.0).AND.(KN(NUM1+3).NE.0)) THEN
               IF(INX2.GT.INX1) KEY=MU(INX2)-INX2+INX1
               IF(INX2.LE.INX1) KEY=MU(INX1)-INX1+INX2
               SG=REAL(SIGN(1,KN(NUM1+2))*SIGN(1,KN(NUM1+3)))
               IF(INX1.EQ.INX2) SG=2.0*SG
               SYS(KEY)=SYS(KEY)-SG*VOL0*R(IELEM+1,1)/SGD(L,1)
            ENDIF
            IF((KN(NUM1+4).NE.0).AND.(KN(NUM1+5).NE.0)) THEN
               IF(INY2.GT.INY1) KEY=MU(INY2)-INY2+INY1
               IF(INY2.LE.INY1) KEY=MU(INY1)-INY1+INY2
               SG=REAL(SIGN(1,KN(NUM1+4))*SIGN(1,KN(NUM1+5)))
               IF(INY1.EQ.INY2) SG=2.0*SG
               SYS(KEY)=SYS(KEY)-SG*VOL0*R(IELEM+1,1)/SGD(L,2)
            ENDIF
         ENDIF
   60   CONTINUE
   70   NUM1=NUM1+5
        NUM2=NUM2+4
   80   CONTINUE
      ELSE
*        CROSS SECTION SYSTEM MATRIX ASSEMBLY. COMPONENTS WITH 1E-10
*        FACTORS ARE INTRODUCED TO MAKE THE MATRIX INVERTIBLE.
         NUM1=0
         DO 110 K=1,NREG
         L=MAT(K)
         IF(L.EQ.0) GO TO 110
         VOL0=VOL(K)
         IF(VOL0.EQ.0.0) GO TO 100
         DO 95 I0=1,IELEM
         INX1=ABS(KN(NUM1+2))+I0-1
         INX2=ABS(KN(NUM1+3))+I0-1
         INY1=ABS(KN(NUM1+4))+I0-1
         INY2=ABS(KN(NUM1+5))+I0-1
         IF(KN(NUM1+2).NE.0) SYS(MU(INX1))=SYS(MU(INX1))+1.0E-30
         IF(KN(NUM1+3).NE.0) SYS(MU(INX2))=SYS(MU(INX2))+1.0E-30
         IF(KN(NUM1+4).NE.0) SYS(MU(INY1))=SYS(MU(INY1))+1.0E-30
         IF(KN(NUM1+5).NE.0) SYS(MU(INY2))=SYS(MU(INY2))+1.0E-30
         DO 90 J0=1,IELEM
         JND1=KN(NUM1+1)+(I0-1)*IELEM+J0-1
         KEY=MU(JND1)
         SYS(KEY)=SYS(KEY)+VOL0*SGD(L,1)
   90    CONTINUE
   95    CONTINUE
  100    NUM1=NUM1+5
  110    CONTINUE
      ENDIF
      RETURN
      END