1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
*DECK BIVA01
SUBROUTINE BIVA01(ITY,MAXKN,SGD,CYLIND,NREG,LL4,NBMIX,IIMAX,XX,
1 YY,DD,MAT,KN,QFR,VOL,MU,LC,R,RS,Q,QS,SYS)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Assembly of a within-group (leakage and removal) or out-of-group
* system matrix in mesh corner finite difference or finite element
* diffusion approximation (Cartesian geometry).
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* ITY type of assembly: =0: leakage-removal matrix assembly;
* =1: cross section matrix assembly.
* MAXKN dimension of array KN.
* SGD nuclear properties. SGD(:,1) and SGD(:,2) are diffusion
* coefficients. SGD(:,3) are removal macroscopic cross sections.
* CYLIND cylinderization flag (=.true. for cylindrical geometry).
* NREG number of elements in BIVAC.
* LL4 order of matrix SYS.
* NBMIX number of macro-mixtures.
* IIMAX allocated dimension of array SYS.
* XX X-directed mesh spacings.
* YY Y-directed mesh spacings.
* DD value used with a cylindrical geometry.
* MAT mixture index per region.
* KN element-ordered unknown list.
* QFR element-ordered boundary conditions.
* VOL volume of regions.
* MU indices used with compressed diagonal storage mode matrix SYS.
* LC number of polynomials in a complete 1-D basis.
* R Cartesian mass matrix.
* RS cylindrical mass matrix.
* Q Cartesian stiffness matrix.
* QS cylindrical stiffness matrix.
*
*Parameters: output
* SYS system matrix.
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER ITY,MAXKN,NREG,LL4,NBMIX,IIMAX,MAT(NREG),KN(MAXKN),
1 MU(LL4),LC
REAL SGD(NBMIX,3),XX(NREG),YY(NREG),DD(NREG),QFR(4*NREG),
1 VOL(NREG),R(LC,LC),RS(LC,LC),Q(LC,LC),QS(LC,LC),SYS(IIMAX)
LOGICAL CYLIND
*----
* LOCAL VARIABLES
*----
INTEGER IJ1(25),IJ2(25),ISR(4,5)
REAL Q2DP1(25,25),Q2DP2(25,25),R2DP(25,25),Q2DC1(25,25),
1 Q2DC2(25,25),R2DC(25,25)
*----
* COMPUTE VECTORS IJ1, IJ2 AND MATRIX ISR.
*----
LL=LC*LC
DO 10 I=1,LL
IJ1(I)=1+MOD(I-1,LC)
IJ2(I)=1+(I-IJ1(I))/LC
10 CONTINUE
DO 20 I=1,LC
ISR(1,I)=(I-1)*LC+1
ISR(2,I)=I*LC
ISR(3,I)=I
ISR(4,I)=LL-LC+I
20 CONTINUE
*----
* COMPUTE THE CARTESIAN 2-D MASS AND STIFFNESS MATRICES FROM TENSORIAL
* PRODUCTS OF 1-D MATRICES.
*----
DO 40 I=1,LL
I1=IJ1(I)
I2=IJ2(I)
DO 30 J=1,LL
J1=IJ1(J)
J2=IJ2(J)
Q2DP1(I,J)=Q(I1,J1)*R(I2,J2)
Q2DP2(I,J)=R(I1,J1)*Q(I2,J2)
R2DP(I,J)=R(I1,J1)*R(I2,J2)
Q2DC1(I,J)=QS(I1,J1)*R(I2,J2)
Q2DC2(I,J)=RS(I1,J1)*Q(I2,J2)
R2DC(I,J)=RS(I1,J1)*R(I2,J2)
30 CONTINUE
40 CONTINUE
*----
* ASSEMBLY OF A SYSTEM MATRIX.
*----
IF(ITY.EQ.0) THEN
* LEAKAGE-REMOVAL SYSTEM MATRIX ASSEMBLY.
NUM1=0
NUM2=0
DO 110 K=1,NREG
L=MAT(K)
IF(L.EQ.0) GO TO 110
IF(VOL(K).EQ.0.0) GO TO 100
DX=XX(K)
DY=YY(K)
DO 60 I=1,LL
IND1=KN(NUM1+I)
IF(IND1.EQ.0) GO TO 60
KEY1=MU(IND1)-IND1
DO 50 J=1,LL
IND2=KN(NUM1+J)
IF((IND2.EQ.0).OR.(IND2.GT.IND1)) GO TO 50
IF(CYLIND) THEN
QQX=(Q2DP1(I,J)+Q2DC1(I,J)*DX/DD(K))/(DX*DX)
QQY=(Q2DP2(I,J)+Q2DC2(I,J)*DX/DD(K))/(DY*DY)
RR=R2DP(I,J)+R2DC(I,J)*DX/DD(K)
ELSE
QQX=Q2DP1(I,J)/(DX*DX)
QQY=Q2DP2(I,J)/(DY*DY)
RR=R2DP(I,J)
ENDIF
IF((QQX.EQ.0.0).AND.(QQY.EQ.0.0).AND.(RR.EQ.0.0)) GO TO 50
KEY=KEY1+IND2
SYS(KEY)=SYS(KEY)+(QQX*SGD(L,1)+QQY*SGD(L,2)+RR*SGD(L,3))
1 *VOL(K)
50 CONTINUE
60 CONTINUE
DO 90 IC=1,4
QFR1=QFR(NUM2+IC)
IF(QFR1.EQ.0.0) GO TO 90
DO 80 I1=1,LC
IND1=KN(NUM1+ISR(IC,I1))
IF(IND1.EQ.0) GO TO 80
KEY1=MU(IND1)-IND1
DO 70 J1=1,LC
IND2=KN(NUM1+ISR(IC,J1))
IF((IND2.EQ.0).OR.(IND2.GT.IND1)) GO TO 70
IF(CYLIND) THEN
CRZ=0.0
IF(IC.EQ.1) THEN
CRZ=-0.5*R(I1,J1)
ELSE IF(IC.EQ.2) THEN
CRZ=0.5*R(I1,J1)
ELSE IF(IC.EQ.3) THEN
CRZ=RS(I1,J1)
ELSE IF(IC.EQ.4) THEN
CRZ=RS(I1,J1)
ENDIF
RR=R(I1,J1)+CRZ*DX/DD(K)
ELSE
RR=R(I1,J1)
ENDIF
IF(RR.EQ.0.0) GO TO 70
KEY=KEY1+IND2
SYS(KEY)=SYS(KEY)+RR*QFR1
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 NUM1=NUM1+LL
NUM2=NUM2+4
110 CONTINUE
ELSE
* CROSS SECTION SYSTEM MATRIX ASSEMBLY.
NUM1=0
DO 150 K=1,NREG
L=MAT(K)
IF(L.EQ.0) GO TO 150
IF(VOL(K).EQ.0.0) GO TO 140
DX=XX(K)
DO 130 I=1,LL
IND1=KN(NUM1+I)
IF(IND1.EQ.0) GO TO 130
KEY1=MU(IND1)-IND1
DO 120 J=1,LL
IND2=KN(NUM1+J)
IF((IND2.EQ.0).OR.(IND2.GT.IND1)) GO TO 120
IF(CYLIND) THEN
RR=R2DP(I,J)+R2DC(I,J)*DX/DD(K)
ELSE
RR=R2DP(I,J)
ENDIF
IF(RR.EQ.0.0) GO TO 120
KEY=KEY1+IND2
SYS(KEY)=SYS(KEY)+RR*SGD(L,1)*VOL(K)
120 CONTINUE
130 CONTINUE
140 NUM1=NUM1+LL
150 CONTINUE
ENDIF
RETURN
END
|