1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
!
!-----------------------------------------------------------------------
!
!Purpose:
! Generate the surfacic geometry ascii file.
!
!Copyright:
! Copyright (C) 2001 Ecole Polytechnique de Montreal.
! This library is free software; you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public
! License as published by the Free Software Foundation; either
! version 2.1 of the License, or (at your option) any later version.
!
!Author(s):
! G. Civario (CS-SI)
!
!Comments:
! Attention, comme SAL est toujours en phase de developpement, des
! modifications ont ete apportees a la routine "calculTypgeo" pour bien prendre
! en compte les condition limites de reflexion. En effet, celle-ci sont
! traitees comme des symetries axiales, dont l'axe est le bord de la geometrie.
! Cependant, une evolution previsible de SAL devrait rendre obsolette cette
! assimilation, et permettre une prise en compte directe des reflexion.
! \\
! fonctions:
! - generateSALFile : creation du fichier de donnees SAL
! - calculTypgeo : determination des donnees typgeo et nbfold
! - calculDefaultCl : dertermination de la meilleur condition limite par
! defaut
!
!-----------------------------------------------------------------------
!
module generSAL
use boundCond
use cellulePlaced
use constType
use constUtiles
use segArc
implicit none
contains
subroutine generateSALFile(fileNbr,szSA,nbNode,nbCLP,nbFlux,nbMacro,merg,imacro)
integer,intent(in) :: fileNbr,szSA,nbNode,nbCLP,nbFlux,nbMacro
integer,dimension(nbNode),intent(in) :: merg
integer,dimension(nbFlux),intent(in) :: imacro
type(t_segArc) :: sa
integer :: i,j,nmoins,nplus
integer :: typgeo,nbfold,defautCl
integer,dimension(:),allocatable :: milTab
integer,dimension(:),allocatable :: tmpTab
real :: cx,cy,tx,ty,delta,albedo
character(len=4) :: strDCL
rewind(fileNbr)
!preparer les donnees de CL pour SAL
call prepareSALBCData(szSA,nbCLP)
write(fileNbr,'(a5)') 'BEGIN'
write(fileNbr,'(/a24)') 'DEFINE DOMAINE'
write(fileNbr,'(a24/)') '=============='
write(fileNbr,'(a28/)') '1.main dimensions:'
write(fileNbr,'(a48)') '*typgeo nbfold nbnode nbelem nbmacro nbflux'
call calculTypgeo(typgeo,nbfold)
write(fileNbr,'(10'//formati//')') typgeo,nbfold,nbNode,szSA,nbMacro,nbFlux
write(fileNbr,'(/a37)') '2.impression and precision:'
write(fileNbr,'(/a21)') '*index kndex prec'
write(fileNbr,'(10'//formati//')') 0,0,1
write(fileNbr,'(/a39)') '3.precision of geometry data:'
write(fileNbr,'(/a4)') '*eps'
write(fileNbr,'('//formatr//')') gSALeps
write(fileNbr,'(/a58)') '4.flux region number per geometry region (mesh):'
write(fileNbr,'(/a6)') '*merge'
write(fileNbr,'(10'//formati//')') (merg(i),i=1,nbNode)
write(fileNbr,'(/a29)') '5.name of geometry:'
write(fileNbr,'(/a12)') '*macro_names'
write(fileNbr,'(4'//formath//')') (i,i=1,nbMacro)
write(fileNbr,'(/a47)') '6.macro order number per flux region:'
write(fileNbr,'(/a14)') '*macro_indices'
allocate(tmpTab(nbFlux))
tmpTab(:nbFlux) = 0
do i = 1,nbNode
tmpTab(merg(i)) = imacro(i)
enddo
write(fileNbr,'(10'//formati//')') (tmpTab(i),i=1,nbFlux)
deallocate(tmpTab)
write(fileNbr,'(/a57)') '7.read integer and real data for each elements:'
do i = 1,szSA
sa = tabSegArc(i)
cx = real(sa%x)
cy = real(sa%y)
if (sa%typ==tseg) then
nmoins = sa%noded
nplus = sa%nodeg
tx = real(sa%dx-sa%x)
ty = real(sa%dy-sa%y)
delta = 0.
else
nmoins = sa%nodeg
nplus = sa%noded
tx = real(sa%r)
if (sa%typ==tarc) then
ty = real(sa%a*rad2deg)
if (sa%b>sa%a) then
delta = real((sa%b-sa%a)*rad2deg)
else
delta = real((sa%b-sa%a)*rad2deg+360.d0)
end if
else
ty = 0.
delta = 0.
end if
end if
write(fileNbr,*)
write(fileNbr,*) 'elem =',i
write(fileNbr,'(a22)') '*type node- node+'
write(fileNbr,'(10'//formati//')') tabSegArc(i)%typ,nmoins,nplus
write(fileNbr,'(a63)') '*cx cy ex or R &
&ey or theta1 theta2'
write(fileNbr,'(5'//formatr//')') cx,cy,tx,ty,delta
end do
write(fileNbr,'(/a63)') '8.read integer and real data for boundary conditions:'
!test de la condition aux limites par defaut en fonction du type de geo
call calculDefaultCl(defautCl,albedo,strDCL)
write(fileNbr,'(/a40)') '*defaul nbbcda allsur divsur ndivsur'
write(fileNbr,'(10'//formati//')') defautCl,nbCLP,0,0,0
write(fileNbr,'(/a24)') 'DEFAULT = ' // strDCL
write(fileNbr,'(a24)') '=============='
write(fileNbr,'(/a17)') '*albedo deltasur'
write(fileNbr,'(5'//formatr//')') albedo,0.0
do i = 1,nbCLP
write(fileNbr,*)
write(fileNbr,*) 'particular boundary condition number',i
write(fileNbr,'(/a13)') '*type nber'
write(fileNbr,'(10'//formati//')') SALbCDataTab(i)%SALtype,SALbCDataTab(i)%nber
allocate(tmpTab(SALbCDataTab(i)%nber),stat=alloc_ok)
if (alloc_ok /= 0) call XABORT("G2S: generateSALFile(1) => allocation pb")
do j = 1,SALbCDataTab(i)%nber
tmpTab(j) = SALbCDataTab(i)%elemNb(j)
end do
write(fileNbr,'(/a14)') '*elems(1,nber)'
write(fileNbr,'(10'//formati//')') tmpTab
deallocate(tmpTab)
select case(SALbCDataTab(i)%SALtype)
case(0,1)
write(fileNbr,'(/a7)') '*albedo'
write(fileNbr,'(5'//formatr//')') SALbCDataTab(i)%albedo
case(2)
write(fileNbr,'(/a11)') '*tx ty'
write(fileNbr,'(5'//formatr//')') SALbCDataTab(i)%tx,SALbCDataTab(i)%ty,0.0
case(3,4)
write(fileNbr,'(/a22)') '*cx cy angle'
write(fileNbr,'(5'//formatr//')') SALbCDataTab(i)%cx,SALbCDataTab(i)%cy &
& ,SALbCDataTab(i)%angle
end select
end do
allocate(milTab(nbNode),stat=alloc_ok)
if (alloc_ok /= 0) call XABORT("G2S: generateSALFile(2) => allocation pb")
do i = 1,szSA
if (tabSegArc(i)%nodeg>0) &
& milTab(tabSegArc(i)%nodeg) = tabSegArc(i)%neutronicMixg
if (tabSegArc(i)%noded>0) &
& milTab(tabSegArc(i)%noded) = tabSegArc(i)%neutronicMixd
end do
write(fileNbr,'(/a28)') '9.medium per node:'
write(fileNbr,'(/a11)') '*mil(nbreg)'
write(fileNbr,'(10'//formati//')') milTab
deallocate(milTab)
write(fileNbr,'(/a3)') 'END'
end subroutine generateSALFile
subroutine calculTypgeo(typgeo,nbfold)
integer,intent(out) :: typgeo,nbfold
integer :: i
integer,dimension(4) :: bc
! typgeo = 0 : no information about perimeter orientation (albedo
! information is available for each axis)
! typgeo = 1 : information used by isotropic tracking with unfolding
! typgeo > 1 : information used by specular tracking
typgeo = 0 ; nbfold = 0
select case(geomTyp)
case(RecTyp)
bc=bCData%bc(1:4)
if ( (bc(1)==B_Pi_2) .and. &
(bc(2)==B_Syme .or. bc(2)==B_Refl .or. bc(2)==B_Ssym) .and. &
(bc(3)==B_Pi_2) .and. &
(bc(4)==B_Syme .or. bc(3)==B_Refl .or. bc(3)==B_Ssym)) then
typgeo = 11
else if (all(bc==(/B_Pi_2,B_Tran,B_Pi_2,B_Tran/))) then
typgeo = 10
else if ((bc(1)==B_Diag ) .and. &
(bc(2)==B_Syme .or. bc(2)==B_Refl .or. bc(2)==B_Ssym) .and. &
(bc(3)==B_Syme .or. bc(3)==B_Refl .or. bc(3)==B_Ssym) .and. &
(bc(4)==B_Diag )) then
typgeo = 7
else if ((bc(1)==B_Syme .or. bc(1)==B_Refl .or. bc(1)==B_Ssym) .and. &
(bc(2)==B_Syme .or. bc(2)==B_Refl .or. bc(2)==B_Ssym) .and. &
(bc(3)==B_Syme .or. bc(3)==B_Refl .or. bc(3)==B_Ssym) .and. &
(bc(4)==B_Syme .or. bc(3)==B_Refl .or. bc(3)==B_Ssym)) then
typgeo = 6
else if (all(bc==(/B_Tran,B_Tran,B_Tran,B_Tran/))) then
typgeo = 5
else if (((bc(1)==B_Tran).and.(bc(2)==B_Tran)) &
& .or.((bc(3)==B_Tran).and.(bc(4)==B_Tran))) then
typgeo = 4
else if ( ( ((bc(1)==B_Syme).or.(bc(1)==B_Refl).or.(bc(1)==B_Ssym)) &
& .and.((bc(2)==B_Syme).or.(bc(2)==B_Refl).or.(bc(2)==B_Ssym)) ) &
& .or.(((bc(3)==B_Syme).or.(bc(3)==B_Refl).or.(bc(3)==B_Ssym)) &
& .and.((bc(4)==B_Syme).or.(bc(4)==B_Refl).or.(bc(4)==B_Ssym)) ) ) then
typgeo = 3
else if ((bc(1)==B_Pi_2).and.(bc(3)==B_Pi_2)) then
typgeo = 2 ; nbfold = 4
else if ( ((bc(1)==B_Syme).or.(bc(1)==B_Ssym)) &
& .and.((bc(3)==B_Syme).or.(bc(3)==B_Ssym)) ) then
typgeo = 1 ; nbfold = 4
else if ((bc(1)==B_Diag).and.((bc(3)==B_Syme).or.(bc(3)==B_Ssym)).and.(bc(4)==B_Diag)) then
typgeo = 1 ; nbfold = 8
else if ((bc(1)==B_Diag).and.(bc(4)==B_Diag)) then
typgeo = 1 ; nbfold = 3 ! nbfold=2 is assigned below
else if ((bc(3)==B_Syme).or.(bc(3)==B_Ssym)) then
typgeo = 1 ; nbfold = 2
end if
if (typgeo==0 .and. all((/ &
( bc(i)==B_Refl.or.bc(i)==B_Ssym.or.bc(i)==B_Syme.or.bc(i)==B_Diag,i=1,4)/))) &
call XABORT("G2S: Type of boundary conditions not supported by SAL(1)")
case(HexTyp)
bc(1)=bCData%bc(1)
if (bCData%iHex==H_S30) then
typgeo = 1 ; nbfold = 12
else if ((bCData%iHex==H_Complete).and.(bc(1)==B_Tran)) then
typgeo = 9 ; nbfold = 0
end if
if (typgeo==0 .and. bCData%bc(1)==B_Refl .or. bCData%bc(1)==B_Syme) &
call XABORT("G2S: Type of boundary conditions not supported by SAL(2)")
case(TriaTyp)
if (bCData%iTri==T_S30) then
typgeo = 1 ; nbfold = 12
end if
case(TubeTyp)
!nothing special
end select
end subroutine calculTypgeo
subroutine calculDefaultCl(defautCl,albedo,strDCL)
integer,intent(out) :: defautCl
real,intent(out) :: albedo
character*4,intent(out) :: strDCL
defautCl = 0
if (bCData%bc(1) == B_Diag) THEN
albedo = 1.0
strDCL = 'REFL'
else
albedo = 0.0
strDCL = 'VOID'
endif
select case(geomTyp)
case(HexTyp)
select case(bCData%bc(1))
case(B_Void,B_Syme,B_Tran)
!rien a faire
case(B_Albe)
albedo = real(bCData%albedo(1))
strDCL = 'ALBE'
case(B_Refl)
defautCl = 1
strDCL = 'REFL'
case default
call XABORT("G2S: Type of boundary conditions not supported by SAL(3)")
end select
case(TriaTyp)
if (bCData%iTri==T_S30 .or. bCData%iTri==T_SA60) then
select case(bCData%bc(1))
case(B_Void,B_Syme)
!rien a faire
case(B_Albe)
albedo = real(bCData%albedo(1))
strDCL = 'ALBE'
case(B_Refl)
defautCl = 1
strDCL = 'REFL'
case default
call XABORT("G2S: Type of boundary conditions not supported by SAL(4)")
end select
end if
case(TubeTyp)
!ATTENTION, l'indice de la cl dans le jdd est 2 et non 1
select case(bCData%bc(2))
case(B_Void)
!rien a faire
case(B_Albe)
albedo = real(bCData%albedo(2))
strDCL = 'ALBE'
case(B_Refl)
defautCl = 1
strDCL = 'REFL'
case default
call XABORT("G2S: Type of boundary conditions not supported by SAL(5)")
end select
end select
end subroutine calculDefaultCl
end module generSAL
|