1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
*DECK XHX2D1
SUBROUTINE XHX2D1 (NGPT,ZGAUS,WGAUS,COTE,SIGT,TRONC,PII,PIS,PSS,
+ P)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute DP1 collision, leakage and transmission probabilities for
* hexagonal 2D geometries.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): M. Ouisloumen
*
*Parameters: input
* NGPT number of Gauss integration points.
* COTE length of one of sides of the hexagon.
* SIGT total cross section.
* TRONC voided block cutoff criterion.
* ZGAUS Gauss-Legendre integration points.
* WGAUS Gauss-Legendre integration weights.
*
*Parameters: output
* PII volume to volume reduced probability.
* PIS leakage probability (PIS(i) volume to side i).
* PSS transmission probability (PSS(i,j) side i to side j).
*
*Parameters: scratch
* P undefined.
*
*Comments:
* Faces identification for hexagon
* side a,b,c
* side 4,5,6 dir a -> isotropic
* xxxxxxxx dir c -> tangent to surface
* x x dir b -> normal to surface
* side 7,8,9 x x side 1,2,3
* x x
* x x
* x x
* side 10,11,12 x x side 16,17,18
* x x
* xxxxxxxx
* side 13,14,15
*
*----
* SUBROUTINE ARGUMENTS
*----
REAL FUNC3,FUNC4,FUNC5,X
INTEGER NGPT
REAL ZGAUS(NGPT),WGAUS(NGPT),COTE,SIGT,TRONC,PII,PIS(18),
+ PSS(18,18)
DOUBLE PRECISION P(16)
*----
* LOCAL VARIABLES
*----
PARAMETER (MKI3=600,MKI4=600,MKI5=600)
PARAMETER (PI=3.141592653589793,SQRT3=1.732050807568877,
+ SQRT2=1.414213562373095,ALOG2=.693147180559945,
+ ALOG3=1.0986122886681097,ALOGX=.7676517525907618)
*
REAL TAU(3),FKI3(3),FKI4(3),FKI5(3),FKI6(3)
INTEGER IROT(18,18)
DOUBLE PRECISION PIS10,PIS11
*----
* ASSUME THAT BICKLEY KI TABLES HAVE THE SAME TABULATION POINTS AND
* THE SAME TRUNCATION LIMIT.
*----
COMMON /BICKL3/BI3(0:MKI3),BI31(0:MKI3),BI32(0:MKI3),PAS3,XLIM3,L3
COMMON /BICKL4/BI4(0:MKI4),BI41(0:MKI4),BI42(0:MKI4),PAS4,XLIM4,L4
COMMON /BICKL5/BI5(0:MKI5),BI51(0:MKI5),BI52(0:MKI5),PAS5,XLIM5,L5
*
SAVE IROT
DATA IROT /
+ 0, 0, 0, 1, 2,-3, 7, 8,-9,13,14, 0, 7, 8, 9, 1, 2, 3,
+ 0, 0, 0, 2, 4, 5, 8,10,11,14,15, 0, 8,10,-11, 2, 4,-5,
+ 0, 0, 0, 3,-5, 6, 9,-11,12,0, 0,16,-9,11,12,-3, 5,6,
+ 1, 2, 3, 0, 0, 0, 1, 2,-3, 7, 8,-9,13,14, 0, 7, 8, 9,
+ 2, 4,-5, 0, 0, 0, 2, 4, 5, 8,10,11,14,15, 0, 8,10,-11,
+ -3, 5, 6, 0, 0, 0, 3,-5, 6, 9,-11,12,0, 0,16,-9,11,12,
+ 7, 8, 9, 1, 2, 3, 0, 0, 0, 1, 2,-3, 7, 8,-9,13,14, 0,
+ 8,10,-11, 2, 4,-5, 0, 0, 0, 2, 4, 5, 8,10,11,14,15, 0,
+ -9,11,12,-3, 5, 6, 0, 0, 0, 3,-5, 6, 9,-11,12,0, 0,16,
+ 13,14, 0, 7, 8, 9, 1, 2, 3, 0, 0, 0, 1, 2,-3, 7, 8,-9,
+ 14,15, 0, 8,10,-11, 2, 4,-5, 0, 0, 0, 2, 4, 5, 8,10,11,
+ 0, 0,16,-9,11,12,-3, 5, 6, 0, 0, 0, 3,-5, 6, 9,-11,12,
+ 7, 8,-9, 13,14, 0, 7, 8, 9, 1, 2, 3, 0, 0, 0, 1, 2,-3,
+ 8,10,11,14,15, 0, 8,10,-11, 2, 4,-5, 0, 0, 0, 2, 4, 5,
+ 9,-11,12, 0, 0,16,-9,11,12,-3, 5, 6, 0, 0, 0, 3,-5, 6,
+ 1, 2,-3, 7, 8,-9, 13,14, 0, 7, 8, 9, 1, 2, 3, 0, 0, 0,
+ 2, 4, 5, 8,10,11,14,15, 0, 8,10,-11, 2, 4,-5, 0, 0, 0,
+ 3,-5, 6, 9,-11,12, 0, 0,16,-9,11,12,-3, 5, 6, 0, 0, 0/
*
FUNC3(X,K)=BI3(K)+X*(BI31(K)+X*BI32(K))
FUNC4(X,K)=BI4(K)+X*(BI41(K)+X*BI42(K))
FUNC5(X,K)=BI5(K)+X*(BI51(K)+X*BI52(K))
*----
* INITIALIZATION OF COLLISION PROBABILITIES
*----
P(:16)=0.0D0
*----
* COMPUTE CORDE =4*V*SIGMA/S=SQRT(3)*COTE*SIGMA (AVERAGE CORDE)
*----
S2S3=SQRT2*SQRT3
S3DS2=SQRT3/SQRT2
CAUX=SQRT3*COTE
CORDE=CAUX*SIGT
IF (CORDE.LE.TRONC) GO TO 300
*----
* CONSIDER EXPLICIT INTEGRATION OF F PSS
*----
PI12=PI/12.
*
* CONSIDER TWO CASES 1) IF ZGAUS(I)<0 => 1/COSFI>1/SINA>1/COSA
* 2) IF ZGAUS(I)>0 => 1/COSFI>1/COSA>1/SINA
*
NGPT2=IFIX(FLOAT(NGPT)/2.)
DO 50 I=1,NGPT
FI=PI12*(1.+ZGAUS(I))
COSFI=COS(FI)
SINFI=SIN(FI)
AUX=SQRT3*COSFI
COSA=AUX-SINFI
COSB=AUX+SINFI
AUX=SQRT3*SINFI
SINA=AUX+COSFI
SINB=COSFI-AUX
*----
* WEIGHTS TIMES BICKLEY NAYLOR FUNCTIONS
*----
W006=SINFI*COSA
W106=W006*COSB
W005=COSFI*SINA
W105=W005*COSB
W204=COSFI*SINB
W114=SINFI*SINFI*SINB
W224=COSFI*W204
*----
* OPTICAL LENGHTS
*----
TAU(1)=CORDE/COSFI
IAUX1=2
IAUX2=3
IF(I.GT.NGPT2) THEN
IAUX1=3
IAUX2=2
ENDIF
TAU(IAUX1)=CORDE/SINA
TAU(IAUX2)=CORDE/COSA
*
LB=4
IF(TAU(1).LT.XLIM3) THEN
LB=1
ELSEIF(TAU(2).LT.XLIM3) THEN
LB=2
ELSEIF(TAU(3).LT.XLIM3) THEN
LB=3
ENDIF
*
DO 10 J=LB,3
K1=NINT(PAS3*TAU(J))
FKI3(J)=FUNC3(TAU(J),K1)
FKI4(J)=FUNC4(TAU(J),K1)
FKI5(J)=FUNC5(TAU(J),K1)
FKI6(J)=.8*FKI4(J)+.2*TAU(J)*(FKI3(J)-FKI5(J))
10 CONTINUE
WEIGHT=0.0
GO TO (20,25,30,50),LB
*----
* PSS CALCULATION
*----
20 WEIGHT=WGAUS(I)
P(13)=P(13)+WEIGHT*SINB*FKI3(1)
P(14)=P(14)+WEIGHT*W204*FKI4(1)
P(16)=P(16)+WEIGHT*W114*FKI5(1)
P(15)=P(15)+WEIGHT*W224*FKI5(1)
AUX5=WEIGHT*W005
P(7)=P(7)+AUX5*(FKI4(IAUX1)-FKI4(1))
P(9)=P(9)+WEIGHT*W105*(FKI5(IAUX1)-FKI5(1))
AUX=AUX5*(FKI6(IAUX1)-FKI6(1))
P(11)=P(11)+AUX
P(10)=P(10)+W005*AUX
GO TO 30
*
25 WEIGHT=WGAUS(I)
AUX5=WEIGHT*W005
P(7)=P(7)+AUX5*FKI4(IAUX1)
P(9)=P(9)+WEIGHT*W105*FKI5(IAUX1)
AUX=AUX5*FKI6(IAUX1)
P(11)=P(11)+AUX
P(10)=P(10)+W005*AUX
30 P(1)=P(1)+WEIGHT*W006*(BI4(0)-FKI4(IAUX2))
P(3)=P(3)+WEIGHT*W106*(BI5(0)-FKI5(IAUX2))
AUX=W006*WEIGHT*(.533333333333333-FKI6(IAUX2))
P(5)=P(5)+AUX
P(4)=P(4)+AUX*W006
50 CONTINUE
*----
* NORMALIZATION
*----
CORDI=1./CORDE
X1=CORDI/3.
X2=CORDI*SQRT3
X3=3.*CORDI
X4=X2/SQRT2
P(1)=X1*P(1)
P(3)=X2*P(3)/6.
P(5)=-X4*P(5)
P(4)=X3*P(4)
P(7)=X1*P(7)
P(9)=X1*P(9)*.5
P(11)=-X4*P(11)
P(10)=X3*P(10)
P(13)=P(13)/3.
P(14)=SQRT2*P(14)
P(16)=4.*P(16)/3.
P(15)=6.*P(15)
AUX=2.*SQRT2
P(2)=S3DS2*P(3)-AUX*P(1)
P(8)=3.*S3DS2*P(9)-AUX*P(7)
P(14)=P(14)-AUX*P(13)
COEF=1./(6.*CORDE)
PIS10=(1.-2.*(P(1)+P(7))-P(13))*COEF
PIS(1)=REAL(PIS10)
PIS11=-(2.*(P(2)+P(8))+P(14))*COEF
PIS(2)=REAL(PIS11)
PII=(1.-6.*PIS(1))/SIGT
*
GO TO 350
*----
* USE SERIES EXPANSION FOR CORDE->0: TAYLOR SERIES OF KI FUNCTIONS
*----
300 TAU0=CORDE*.5
TAU02=TAU0*TAU0
AUX=SQRT3/PI
AUX0=1.-.5*SQRT3
AUX1=AUX*ALOG3-.33333333333333333
AUX2=2./SQRT3-(2.+ALOGX)/3.
P(1)=AUX0-.5*(TAU0*AUX1-TAU02*AUX2)
P(5)=-S2S3*(1.125*AUX0-.5*TAU0*AUX1+.375*TAU02*AUX2)
P(3)=(-(1.5*ALOGX+1.-SQRT3)*TAU0*.25+(1.-TAU02)/9+
+ AUX*TAU02/3.)*SQRT3
P(4)=2.25*(1.25*SQRT3-2.)-TAU0*(2.-3.*AUX)+TAU02*
+ (2.25*ALOGX-1.5)
XAUX=5.*SQRT3-9.
XAUX0=SQRT3-1.5
AUX1=AUX*(2.5*ALOG3-4.*ALOG2)-.5
AUX2=XAUX-2.*ALOG3+.5*ALOGX
P(7)=XAUX0+TAU0*AUX1-TAU02*AUX2/3.
P(11)=-S2S3*(1.125*XAUX0+TAU0*AUX1-.25*AUX2*TAU02)
P(9)=SQRT3/9.+.25*(XAUX-.5*SQRT3*(2.*ALOG3-ALOGX))*TAU0-
+ (9.*ALOG3-16.*ALOG2-3.)*TAU02/(3.*PI)
P(10)=2.25*(SQRT3-.75)+TAU0*(3.*AUX-6.)-1.5*TAU02*
+ (9.*(2.-SQRT3)+1.5*ALOGX-6.*ALOG3)
AUX0=2.*AUX0
AUX1=AUX*(.5*ALOG3-ALOG2)
P(13)=AUX0-8.*(1./6.+AUX1)*TAU0-4.*TAU02*(AUX0-.5*ALOG3)
P(15)=4.5*(2.5-SQRT3)-8.*TAU0+36.*TAU02*AUX0
AUX2=XAUX-2.*ALOG3+.5*ALOGX
P(16)=3.5-2.*SQRT3-64.*TAU0*(AUX1+1./12.)/3.+8.*TAU02*
+ (.5*ALOG3-2.*AUX0)
PSQ3=SQRT3/PI
P(14)=SQRT2*(2./3.-6.*TAU0*AUX0+TAU02*(4.+24.*PSQ3*
+ (.5*ALOG3-ALOG2)))
PII=COTE*SQRT3*(4.*SQRT3-8.-2.*ALOGX+10.*ALOG3)/12.
PIS(1)=(1.-SIGT*PII)/6.
PIS(2)=-SQRT2*(2.5-2.25*ALOG3+TAU0*(9.+PSQ3*(4.-8.*ALOG2+
+ 3.*ALOG3)-8./SQRT3-(20.*ALOG3-4.*ALOGX)/3.))/12.
AUX=2.*SQRT2
P(2)=S3DS2*P(3)-AUX*P(1)
P(8)=3.*S3DS2*P(9)-AUX*P(7)
P(14)=P(14)-AUX*P(13)
*
350 CONTINUE
*----
* COMPUTE REMAINING PROBABILITIES
*----
P(4)=P(4)-4.*SQRT3*P(3)+8.*P(1)
P(5)=P(5)+AUX*P(3)
P(6)=(S2S3*P(5)+8.*(-SQRT3*P(3)+P(1))-P(4))*2./9.
P(10)=P(10)-4.*SQRT2*P(8)-8.*P(7)
P(11)=P(11)+AUX*P(9)
P(12)=(8.*(P(7)-SQRT3*P(9))-S2S3*P(11)-P(10))*2./9.
P(15)=P(15)-4.*SQRT2*P(14)-8.*P(13)
P(3)=-P(3)
P(5)=-P(5)
P(9)=-P(9)
P(11)=-P(11)
*----
* TRANSMISSION MATRIX
*----
DO 59 I=1,18
DO 58 J=1,18
IB=IROT(J,I)
IF(IB.LT.0) THEN
PSS(I,J)=-REAL(P(-IB))
ELSEIF(IB.GT.0) THEN
PSS(I,J)=REAL(P(IB))
ELSE
PSS(I,J)=0.
ENDIF
58 CONTINUE
59 CONTINUE
*----
* LEAKAGE PRABABILITIES MATRIX
*----
PIS(3)=0.
K=3
DO 56 I=1,5
K=K+3
PIS(K-2)=PIS(1)
PIS(K-1)=PIS(2)
PIS(K)=0.
56 CONTINUE
*
RETURN
END
|