summaryrefslogtreecommitdiff
path: root/Dragon/src/XHX2D0.f
blob: 844d015327d1fec6fa494d2e8a3d0aad23ed2786 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
*DECK XHX2D0
      SUBROUTINE XHX2D0 (NGPT,ZGAUS,WGAUS,COTE,SIGT,TRONC,PII,PIS,PSS)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute DP0 collision, leakage and transmission probabilities for
* hexagonal 2D geometries.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): M. Ouisloumen
*
*Parameters: input
* NGPT    number of Gauss integration points.
* COTE    length of one of sides of the hexagon.
* SIGT    total cross section.
* TRONC   voided block cutoff criterion.
* ZGAUS   Gauss-Legendre integration points.
* WGAUS   Gauss-Legendre integration weights.
*
*Parameters: output
* PII     volume to volume reduced probability.
* PIS     leakage probability (PIS(i) volume to side i).
* PSS     transmission probability (PSS(i,j) side i to side j).
*
*Comments:
* Faces identification for hexagon
*                   side 4
*                  xxxxxxxx
*                 x        x
*       side 5   x          x side 3
*               x            x
*              x              x
*               x            x
*       side 6   x          x side 2
*                 x        x
*                  xxxxxxxx
*                   side 1
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER    NGPT
      REAL       ZGAUS(NGPT),WGAUS(NGPT),COTE,SIGT,TRONC,PII,PIS(6),
     +           PSS(6,6)
*----
*  LOCAL VARIABLES
*----
      PARAMETER (MKI3=600,MKI4=600,MKI5=600)
      PARAMETER (PI=3.141592653589793,SQRT3=1.732050807568877,
     +           SQRT2=1.414213562373095,ALOG2=.693147180559945,
     +           ALOG3=1.0986122886681097,ALOGX=.7676517525907618)
*
      REAL       TAU(3),FKI3(3),FKI4(3),FKI5(3),FKI6(3)
      INTEGER    IROT(6,6)
      DOUBLE PRECISION P(3),PIS10
*----
*  ASSUME THAT BICKLEY KI TABLES HAVE THE SAME TABULATION POINTS AND
*  THE SAME TRUNCATION LIMIT
*----
      COMMON /BICKL3/BI3(0:MKI3),BI31(0:MKI3),BI32(0:MKI3),PAS3,XLIM3,L3
      COMMON /BICKL4/BI4(0:MKI4),BI41(0:MKI4),BI42(0:MKI4),PAS4,XLIM4,L4
      COMMON /BICKL5/BI5(0:MKI5),BI51(0:MKI5),BI52(0:MKI5),PAS5,XLIM5,L5
*
      SAVE IROT
      DATA IROT /
     +          0, 1, 2, 3, 2, 1,
     +          1, 0, 1, 2, 3, 2,
     +          2, 1, 0, 1, 2, 3,
     +          3, 2, 1, 0, 1, 2,
     +          2, 3, 2, 1, 0, 1,
     +          1, 2, 3, 2, 1, 0/
*
      FUNC3(X,K)=BI3(K)+X*(BI31(K)+X*BI32(K))
      FUNC4(X,K)=BI4(K)+X*(BI41(K)+X*BI42(K))
      FUNC5(X,K)=BI5(K)+X*(BI51(K)+X*BI52(K))
*----
*  INITIALIZATION OF COLLISION PROBABILITIES
*----
      P(3)=0.
      P(2)=0.
      P(1)=0.
*----
*  COMPUTE CORDE =4*V*SIGMA/S=SQRT(3)*COTE*SIGMA  (AVERAGE CORDE)
*----
      CORDE=SQRT3*COTE*SIGT
      IF (CORDE.LE.TRONC) GO TO 300
*----
*  CONSIDER EXPLICIT INTEGRATION OF F PSS
*----
      PI12=PI/12.
*
*  CONSIDER TWO CASES  1) IF ZGAUS(I)<0 => 1/COSFI>1/SINA>1/COSA
*                      2) IF ZGAUS(I)>0 => 1/COSFI>1/COSA>1/SINA
*
      NGPT2=IFIX(FLOAT(NGPT)/2.)
      DO 50 I=1,NGPT
      FI=PI12*(1.+ZGAUS(I))
      COSFI=COS(FI)
      SINFI=SIN(FI)
      COSA=SQRT3*COSFI-SINFI
      AUX=SQRT3*SINFI
      SINA=AUX+COSFI
      SINB=COSFI-AUX
*----
*  OPTICAL LENGHTS
*----
      TAU(1)=CORDE/COSFI
      IAUX1=2
      IAUX2=3
      IF(I.GT.NGPT2) THEN
        IAUX1=3
        IAUX2=2
      ENDIF
      TAU(IAUX1)=CORDE/SINA
      TAU(IAUX2)=CORDE/COSA
*
      LB=4
      IF(TAU(1).LT.XLIM3) THEN
        LB=1
      ELSEIF(TAU(2).LT.XLIM3) THEN
        LB=2
      ELSEIF(TAU(3).LT.XLIM3) THEN
        LB=3
      ENDIF
*
      DO 10 J=LB,3
      K1=NINT(PAS3*TAU(J))
      FKI3(J)=FUNC3(TAU(J),K1)
      FKI4(J)=FUNC4(TAU(J),K1)
      FKI5(J)=FUNC5(TAU(J),K1)
      FKI6(J)=.8*FKI4(J)+.2*TAU(J)*(FKI3(J)-FKI5(J))
   10 CONTINUE
*
      WEIGHT=0.0
      GO TO (20,25,30,50),LB
*----
*  PSS CALCULATION
*----
   20 WEIGHT=WGAUS(I)
      P(3)=P(3)+WEIGHT*SINB*FKI3(1)
      P(2)=P(2)+WEIGHT*COSFI*SINA*(FKI4(IAUX1)-FKI4(1))
      GO TO 30
*
   25 WEIGHT=WGAUS(I)
      P(2)=P(2)+WEIGHT*COSFI*SINA*FKI4(IAUX1)
   30 P(1)=P(1)+WEIGHT*SINFI*COSA*(BI4(0)-FKI4(IAUX2))
   50 CONTINUE
*----
*  NORMALIZATION
*----
      X1=1./(3.*CORDE)
      P(1)=X1*P(1)
      P(2)=X1*P(2)
      P(3)=P(3)/3.
      PIS10=(1.-2.*(P(1)+P(2))-P(3))/(6.*CORDE)
      PII=(1.-6.*REAL(PIS10))/SIGT
*
      GO TO 350
*----
*  USE SERIES EXPANSION FOR CORDE->0: TAYLOR SERIES OF KI FUNCTIONS
*----
  300 TAU0=CORDE*.5
      TAU02=TAU0*TAU0
      AUX=SQRT3/PI
      AUX0=1.-.5*SQRT3
      AUX1=AUX*ALOG3-.33333333333333333
      AUX2=2./SQRT3-(2.+ALOGX)/3.
      P(1)=AUX0-.5*(TAU0*AUX1-TAU02*AUX2)
      AUX1=AUX*(2.5*ALOG3-4.*ALOG2)-.5
      AUX2=5.*SQRT3-9.-2.*ALOG3+.5*ALOGX
      P(2)=SQRT3-1.5+TAU0*AUX1-TAU02*AUX2/3.
      AUX0=2.*AUX0
      AUX1=AUX*(.5*ALOG3-ALOG2)
      P(3)=AUX0-8.*(1./6.+AUX1)*TAU0-4.*TAU02*(AUX0-.5*ALOG3)
      PII=COTE*SQRT3*(4.*SQRT3-8.-2.*ALOGX+10.*ALOG3)/12.
      PIS10=(1.-SIGT*PII)/6.
*
  350 CONTINUE
*----
*  TRANSMISSION MATRIX
*----
      DO  59 I=1,6
      DO  58 J=1,6
      IB=IROT(J,I)
      IF(IB.GT.0) THEN
         PSS(I,J)=REAL(P(IB))
      ELSE
         PSS(I,J)=0.
      ENDIF
   58 CONTINUE
   59 CONTINUE
*----
*  LEAKAGE PRABABILITIES MATRIX
*----
      DO 56 I=1,6
      PIS(I)=REAL(PIS10)
   56 CONTINUE
*
      RETURN
      END