1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
*DECK XHX2D0
SUBROUTINE XHX2D0 (NGPT,ZGAUS,WGAUS,COTE,SIGT,TRONC,PII,PIS,PSS)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute DP0 collision, leakage and transmission probabilities for
* hexagonal 2D geometries.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): M. Ouisloumen
*
*Parameters: input
* NGPT number of Gauss integration points.
* COTE length of one of sides of the hexagon.
* SIGT total cross section.
* TRONC voided block cutoff criterion.
* ZGAUS Gauss-Legendre integration points.
* WGAUS Gauss-Legendre integration weights.
*
*Parameters: output
* PII volume to volume reduced probability.
* PIS leakage probability (PIS(i) volume to side i).
* PSS transmission probability (PSS(i,j) side i to side j).
*
*Comments:
* Faces identification for hexagon
* side 4
* xxxxxxxx
* x x
* side 5 x x side 3
* x x
* x x
* x x
* side 6 x x side 2
* x x
* xxxxxxxx
* side 1
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER NGPT
REAL ZGAUS(NGPT),WGAUS(NGPT),COTE,SIGT,TRONC,PII,PIS(6),
+ PSS(6,6)
*----
* LOCAL VARIABLES
*----
PARAMETER (MKI3=600,MKI4=600,MKI5=600)
PARAMETER (PI=3.141592653589793,SQRT3=1.732050807568877,
+ SQRT2=1.414213562373095,ALOG2=.693147180559945,
+ ALOG3=1.0986122886681097,ALOGX=.7676517525907618)
*
REAL TAU(3),FKI3(3),FKI4(3),FKI5(3),FKI6(3)
INTEGER IROT(6,6)
DOUBLE PRECISION P(3),PIS10
*----
* ASSUME THAT BICKLEY KI TABLES HAVE THE SAME TABULATION POINTS AND
* THE SAME TRUNCATION LIMIT
*----
COMMON /BICKL3/BI3(0:MKI3),BI31(0:MKI3),BI32(0:MKI3),PAS3,XLIM3,L3
COMMON /BICKL4/BI4(0:MKI4),BI41(0:MKI4),BI42(0:MKI4),PAS4,XLIM4,L4
COMMON /BICKL5/BI5(0:MKI5),BI51(0:MKI5),BI52(0:MKI5),PAS5,XLIM5,L5
*
SAVE IROT
DATA IROT /
+ 0, 1, 2, 3, 2, 1,
+ 1, 0, 1, 2, 3, 2,
+ 2, 1, 0, 1, 2, 3,
+ 3, 2, 1, 0, 1, 2,
+ 2, 3, 2, 1, 0, 1,
+ 1, 2, 3, 2, 1, 0/
*
FUNC3(X,K)=BI3(K)+X*(BI31(K)+X*BI32(K))
FUNC4(X,K)=BI4(K)+X*(BI41(K)+X*BI42(K))
FUNC5(X,K)=BI5(K)+X*(BI51(K)+X*BI52(K))
*----
* INITIALIZATION OF COLLISION PROBABILITIES
*----
P(3)=0.
P(2)=0.
P(1)=0.
*----
* COMPUTE CORDE =4*V*SIGMA/S=SQRT(3)*COTE*SIGMA (AVERAGE CORDE)
*----
CORDE=SQRT3*COTE*SIGT
IF (CORDE.LE.TRONC) GO TO 300
*----
* CONSIDER EXPLICIT INTEGRATION OF F PSS
*----
PI12=PI/12.
*
* CONSIDER TWO CASES 1) IF ZGAUS(I)<0 => 1/COSFI>1/SINA>1/COSA
* 2) IF ZGAUS(I)>0 => 1/COSFI>1/COSA>1/SINA
*
NGPT2=IFIX(FLOAT(NGPT)/2.)
DO 50 I=1,NGPT
FI=PI12*(1.+ZGAUS(I))
COSFI=COS(FI)
SINFI=SIN(FI)
COSA=SQRT3*COSFI-SINFI
AUX=SQRT3*SINFI
SINA=AUX+COSFI
SINB=COSFI-AUX
*----
* OPTICAL LENGHTS
*----
TAU(1)=CORDE/COSFI
IAUX1=2
IAUX2=3
IF(I.GT.NGPT2) THEN
IAUX1=3
IAUX2=2
ENDIF
TAU(IAUX1)=CORDE/SINA
TAU(IAUX2)=CORDE/COSA
*
LB=4
IF(TAU(1).LT.XLIM3) THEN
LB=1
ELSEIF(TAU(2).LT.XLIM3) THEN
LB=2
ELSEIF(TAU(3).LT.XLIM3) THEN
LB=3
ENDIF
*
DO 10 J=LB,3
K1=NINT(PAS3*TAU(J))
FKI3(J)=FUNC3(TAU(J),K1)
FKI4(J)=FUNC4(TAU(J),K1)
FKI5(J)=FUNC5(TAU(J),K1)
FKI6(J)=.8*FKI4(J)+.2*TAU(J)*(FKI3(J)-FKI5(J))
10 CONTINUE
*
WEIGHT=0.0
GO TO (20,25,30,50),LB
*----
* PSS CALCULATION
*----
20 WEIGHT=WGAUS(I)
P(3)=P(3)+WEIGHT*SINB*FKI3(1)
P(2)=P(2)+WEIGHT*COSFI*SINA*(FKI4(IAUX1)-FKI4(1))
GO TO 30
*
25 WEIGHT=WGAUS(I)
P(2)=P(2)+WEIGHT*COSFI*SINA*FKI4(IAUX1)
30 P(1)=P(1)+WEIGHT*SINFI*COSA*(BI4(0)-FKI4(IAUX2))
50 CONTINUE
*----
* NORMALIZATION
*----
X1=1./(3.*CORDE)
P(1)=X1*P(1)
P(2)=X1*P(2)
P(3)=P(3)/3.
PIS10=(1.-2.*(P(1)+P(2))-P(3))/(6.*CORDE)
PII=(1.-6.*REAL(PIS10))/SIGT
*
GO TO 350
*----
* USE SERIES EXPANSION FOR CORDE->0: TAYLOR SERIES OF KI FUNCTIONS
*----
300 TAU0=CORDE*.5
TAU02=TAU0*TAU0
AUX=SQRT3/PI
AUX0=1.-.5*SQRT3
AUX1=AUX*ALOG3-.33333333333333333
AUX2=2./SQRT3-(2.+ALOGX)/3.
P(1)=AUX0-.5*(TAU0*AUX1-TAU02*AUX2)
AUX1=AUX*(2.5*ALOG3-4.*ALOG2)-.5
AUX2=5.*SQRT3-9.-2.*ALOG3+.5*ALOGX
P(2)=SQRT3-1.5+TAU0*AUX1-TAU02*AUX2/3.
AUX0=2.*AUX0
AUX1=AUX*(.5*ALOG3-ALOG2)
P(3)=AUX0-8.*(1./6.+AUX1)*TAU0-4.*TAU02*(AUX0-.5*ALOG3)
PII=COTE*SQRT3*(4.*SQRT3-8.-2.*ALOGX+10.*ALOG3)/12.
PIS10=(1.-SIGT*PII)/6.
*
350 CONTINUE
*----
* TRANSMISSION MATRIX
*----
DO 59 I=1,6
DO 58 J=1,6
IB=IROT(J,I)
IF(IB.GT.0) THEN
PSS(I,J)=REAL(P(IB))
ELSE
PSS(I,J)=0.
ENDIF
58 CONTINUE
59 CONTINUE
*----
* LEAKAGE PRABABILITIES MATRIX
*----
DO 56 I=1,6
PIS(I)=REAL(PIS10)
56 CONTINUE
*
RETURN
END
|