1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
*DECK XDRH33
SUBROUTINE XDRH33 (IBIHET,NUN,IR1,NMILG,NREG,NREG2,NG,NSMAX,
1 KEYFLX,NS,IDIL,MIXGR,IBI,FRACT,VOLK,SIGMA,P1I,P1DI,P1KI,SIGA1,
2 FUNKNO)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Calculation of the composite flux for the She-Liu-Shi double
* heterogeneity model (part 3).
*
*Copyright:
* Copyright (C) 2019 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Chambon
*
*Parameters: input
* IBIHET type of double-heterogeneity method (=1 Sanchez-Pomraning
* model; =2 Hebert model).
* NUN number of unknown in the system.
* IR1 number of mixtures in the domain.
* NMILG number of composite mixtures in the domain.
* NREG number of volumes in the composite geometry.
* NREG2 number of volumes in the macro geometry.
* NG number of different kind of micro structures. A kind of
* micro structure is characterized by the radius of its
* micro volumes. All the micro volumes of the same kind
* should own the same nuclear properties in a given macro
* volume.
* NSMAX maximum number of volumes (tubes or shells) in each kind of
* micro structure.
* KEYFLX flux elements in unknown system.
* NS number of volumes in each kind of micro structure.
* IDIL elementary mixture indices in the diluent of the composite
* mixtures.
* MIXGR elementary mixture indices in the micro structures.
* IBI type of mixture in each volume of the macro geometry.
* If IBI(IKK) is greater than IR1, the volume IKK contains a
* micro structure.
* FRACT volumic fractions of the micro volumes.
* VOLK volumic fractions of the tubes or shells in the micro volumes.
* SIGMA equivalent total macroscopic cross section in each mixture.
* P1I non collision probability in subvolume with 1 grain type.
* P1KI escape probability from layer k in subvolume
* with 1 grain type.
* P1DI escape probability from matrix in subvolume
* with 1 grain type.
* SIGA1 corrected cross section.
*
*Parameters: input/output
* FUNKNO macro-flux on input (solution of the transport equation
* defined over the macro-geometry) and composite flux on output.
*
*-----------------------------------------------------------------------
*
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IBIHET,NUN,IR1,NMILG,NREG,NREG2,NG,NSMAX,KEYFLX(NREG),
1 NS(NG),IDIL(NMILG),MIXGR(NSMAX,NG,NMILG),IBI(NREG2)
REAL FRACT(NG,IR1+NMILG),VOLK(NG,NSMAX),SIGMA(0:IR1+NMILG),
1 P1I(NG,NMILG),P1DI(NG,NMILG),P1KI(NSMAX,NG,NMILG),
2 SIGA1(NG,NMILG),FUNKNO(NUN)
*----
* LOCAL VARIABLES
*----
INTEGER IBM,I,J,K,IUNK,IND1,MIL
REAL FAVG,SIGTT,DILF,FRT
*----
* SCRATCH STORAGE ALLOCATION
*----
IF(IBIHET.NE.3) THEN
CALL XABORT('XDRH33: INVALID DOUBLE HETEROGENEITY METHOD.')
ENDIF
*----
* COMPUTE THE COMPOSITE FLUX.
*----
IND1=NREG2
DO 60 I=1,NREG2
MIL=IBI(I)
IF(MIL.GT.IR1) THEN
IBM=MIL-IR1
FAVG=FUNKNO(KEYFLX(I))
SIGTT=SIGMA(IR1+IBM)
DILF=1.0
DO 30 J=1,NG
FRT=FRACT(J,MIL)
DILF=DILF-FRT
IF(FRT.LE.0.00001) GO TO 30
30 CONTINUE
* flux in composite matrix
FUNKNO(KEYFLX(I))=0.0
IUNK=KEYFLX(I)
DO 40 J=1,NG
FRT=FRACT(J,MIL)
IF(FRT.LE.0.00001) GO TO 40
FUNKNO(KEYFLX(I))=FUNKNO(KEYFLX(I))+FAVG*SIGA1(J,IBM)
> /SIGMA(IDIL(IBM))/(1.0-P1I(J,IBM))*P1DI(J,IBM)/DILF
DO K=1,NS(J)
IUNK=KEYFLX(IND1+K)
FUNKNO(IUNK)=FAVG*SIGA1(J,IBM)/SIGMA(MIXGR(K,J,IBM))
> /(1.0-P1I(J,IBM))*P1KI(K,J,IBM)/(1.0-DILF)/VOLK(J,K)
ENDDO
IND1=IND1+NS(J)
40 CONTINUE
ENDIF
60 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
RETURN
END
|