summaryrefslogtreecommitdiff
path: root/Dragon/src/XDRH30.f
blob: bdb778f87f6731e60b3242ae634959ef0bc30d19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
*DECK XDRH30
      SUBROUTINE XDRH30 (IBIHET,NUN,IR1,NMILG,NREG,NREG2,NG,NSMAX,
     1 KEYFLX,NS,IDIL,MIXGR,IBI,FRACT,VOLK,SIGMA,SIGMS,NCO,RRRR,QKOLD,
     2 QKDEL,PKL,COEF,SUNKNO,FUNKNO)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Calculation of the composite flux for the Hebert or Sanchez-Pomraning
* double heterogeneity model (part 3).
*
*Copyright:
* Copyright (C) 2007 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IBIHET  type of double-heterogeneity method (=1 Sanchez-Pomraning
*         model; =2 Hebert model).
* NUN     number of unknown in the system.
* IR1     number of mixtures in the domain.
* NMILG   number of composite mixtures in the domain.
* NREG    number of volumes in the composite geometry.
* NREG2   number of volumes in the macro geometry.
* NG      number of different kind of micro structures. A kind of
*         micro structure is characterized by the radius of its
*         micro volumes. All the micro volumes of the same kind
*         should own the same nuclear properties in a given macro
*         volume.
* NSMAX   maximum number of volumes (tubes or shells) in each kind of
*         micro structure.
* KEYFLX  flux elements in unknown system.
* NS      number of volumes in each kind of micro structure.
* IDIL    elementary mixture indices in the diluent of the composite
*         mixtures.
* MIXGR   elementary mixture indices in the micro structures.
* IBI     type of mixture in each volume of the macro geometry.
*         If IBI(IKK) is greater than IR1, the volume IKK contains a
*         micro structure.
* FRACT   volumic fractions of the micro volumes.
* VOLK    volumic fractions of the tubes or shells in the micro volumes.
* SIGMA   equivalent total macroscopic cross section in each mixture.
* SIGMS   equivalent scattering macroscopic cross section in each
*         mixture.
* NCO     number of volumes in each composite mixture.
* QKOLD   information computed by XDRH11.
* QKDEL   information computed by XDRH11 or XDRH12.
* PKL     information computed by XDRH11 or XDRH12.
* RRRR    information computed by XDRH11 or XDRH12.
* COEF    information computed by XDRH11 or XDRH12.
* SUNKNO  sources defined in the composite geometry.
*
*Parameters: input/output
* FUNKNO  macro-flux on input (solution of the transport equation 
*         defined over the macro-geometry) and composite flux on output.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER IBIHET,NUN,IR1,NMILG,NREG,NREG2,NG,NSMAX,KEYFLX(NREG),
     1 NS(NG),IDIL(NMILG),MIXGR(NSMAX,NG,NMILG),IBI(NREG2),NCO(NMILG)
      REAL FRACT(NG,IR1+NMILG),VOLK(NG,NSMAX),SIGMA(0:IR1+NMILG),
     1 SIGMS(0:IR1+NMILG),RRRR(NMILG),QKOLD(NG,NSMAX,NMILG),
     2 QKDEL(NG,NSMAX,NMILG),PKL(NG,NSMAX,NSMAX,NMILG),SUNKNO(NUN),
     3 FUNKNO(NUN)
      DOUBLE PRECISION COEF(1+NG*NSMAX,1+NG*NSMAX,NMILG)
*----
*  LOCAL VARIABLES
*----
      DOUBLE PRECISION DP0,DDOT
      REAL, ALLOCATABLE, DIMENSION(:) :: FLUAS
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: RHS
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(FLUAS(NREG2),RHS(1+NG*NSMAX))
*
      IF(IBIHET.EQ.1) THEN
         GO TO 10
      ELSE IF(IBIHET.EQ.2) THEN
         GO TO 70
      ELSE
         CALL XABORT('XDRH30: INVALID DOUBLE HETEROGENEITY METHOD.')
      ENDIF
*----
*  COMPUTE THE COMPOSITE FLUX (SANCHEZ-POMRANING METHOD).
*----
   10 IND1=NREG2
      DO 60 I=1,NREG2
      MIL=IBI(I)
      IF(MIL.GT.IR1) THEN
         IBM=MIL-IR1
         FUNKNO(KEYFLX(I))=FUNKNO(KEYFLX(I))/RRRR(IBM)
         INDGAR=IND1
         DILF=1.0
         DP0=0.0D0
         DO 30 J=1,NG
         FRT=FRACT(J,MIL)
         DILF=DILF-FRT
         IF(FRT.LE.0.00001) GO TO 30
         DO 20 K=1,NS(J)
         DP0=DP0+FRT*VOLK(J,K)*QKOLD(J,K,IBM)*SIGMA(MIXGR(K,J,IBM))
   20    CONTINUE
         IND1=IND1+NS(J)
   30    CONTINUE
         DP0=DP0+DILF*SIGMA(IDIL(IBM))
         IUNK=KEYFLX(I)
         RHS(1)=DILF*(SIGMS(IDIL(IBM))*FUNKNO(IUNK)+SUNKNO(IUNK))/DP0
         IND1=INDGAR
         IND2=1
         DO 40 J=1,NG
         FRT=FRACT(J,MIL)
         IF(FRT.LE.0.00001) GO TO 40
         DO K=1,NS(J)
           IUNK=KEYFLX(IND1+K)
           RHS(1)=RHS(1)+FRT*VOLK(J,K)*QKOLD(J,K,IBM)*SUNKNO(IUNK)/DP0
           RHS(IND2+K)=QKDEL(J,K,IBM)*FUNKNO(KEYFLX(I))
           DO N=1,NS(J)
             IUNK=KEYFLX(IND1+N)
             RHS(IND2+K)=RHS(IND2+K)+PKL(J,K,N,IBM)*SUNKNO(IUNK)
           ENDDO
         ENDDO
         IND1=IND1+NS(J)
         IND2=IND2+NS(J)
   40    CONTINUE
         IND1=INDGAR
         IND2=1
         DO 50 J=1,NG
         IF(FRACT(J,MIL).LE.0.00001) GO TO 50
         DO K=1,NS(J)
           IUNK=KEYFLX(IND1+K)
           DP0=DDOT(NCO(IBM),COEF(IND2+K,1,IBM),1+NG*NSMAX,RHS,1)
           FUNKNO(IUNK)=REAL(DP0)
         ENDDO
         IND1=IND1+NS(J)
         IND2=IND2+NS(J)
   50    CONTINUE
      ENDIF
   60 CONTINUE
      RETURN
*----
*  COMPUTE THE COMPOSITE FLUX (HEBERT METHOD).
*----
   70 IND1=NREG2
      DO 120 I=1,NREG2
      MIL=IBI(I)
      IF(MIL.GT.IR1) THEN
         IBM=MIL-IR1
         INDGAR=IND1
         DILF=1.0
         DP0=0.0D0
         DO 90 J=1,NG
         FRT=FRACT(J,MIL)
         DILF=DILF-FRT
         IF(FRT.LE.0.00001) GO TO 90
         DO 80 K=1,NS(J)
         DP0=DP0+FRT*VOLK(J,K)*QKDEL(J,K,IBM)*SIGMA(MIXGR(K,J,IBM))
   80    CONTINUE
         IND1=IND1+NS(J)
   90    CONTINUE
         DP0=DP0+DILF*SIGMA(IDIL(IBM))
         IUNK=KEYFLX(I)
         RHS(1)=DILF*(RRRR(IBM)*SIGMS(IDIL(IBM))*FUNKNO(IUNK)+
     1   SUNKNO(IUNK))/DP0
         IND1=INDGAR
         IND2=1
         DO 100 J=1,NG
         FRT=FRACT(J,MIL)
         IF(FRT.LE.0.00001) GO TO 100
         DO K=1,NS(J)
           IUNK=KEYFLX(IND1+K)
           RHS(1)=RHS(1)+FRT*VOLK(J,K)*QKDEL(J,K,IBM)*SUNKNO(IUNK)/DP0
           RHS(IND2+K)=RRRR(IBM)*QKDEL(J,K,IBM)*FUNKNO(KEYFLX(I))
           DO N=1,NS(J)
             IUNK=KEYFLX(IND1+N)
             RHS(IND2+K)=RHS(IND2+K)+PKL(J,K,N,IBM)*SUNKNO(IUNK)
           ENDDO
         ENDDO
         IND1=IND1+NS(J)
         IND2=IND2+NS(J)
  100    CONTINUE
         IND1=INDGAR
         IND2=1
         DO 110 J=1,NG
         IF(FRACT(J,MIL).LE.0.00001) GO TO 110
         DP0=DDOT(NCO(IBM),COEF(1,1,IBM),1+NG*NSMAX,RHS,1)
         FLUAS(I)=REAL(DP0)*SIGMA(IBI(I))
         DO K=1,NS(J)
           IUNK=KEYFLX(IND1+K)
           DP0=DDOT(NCO(IBM),COEF(IND2+K,1,IBM),1+NG*NSMAX,RHS,1)
           FUNKNO(IUNK)=REAL(DP0)
         ENDDO
         IND1=IND1+NS(J)
         IND2=IND2+NS(J)
  110    CONTINUE
         IUNK=KEYFLX(I)
         FUNKNO(IUNK)=RRRR(IBM)*FUNKNO(IUNK)+(1.0-RRRR(IBM))*FLUAS(I)/
     1   SIGMA(IBI(I))
      ENDIF
  120 CONTINUE
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(RHS,FLUAS)
      RETURN
      END