1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
*DECK XDRH13
SUBROUTINE XDRH13 (IR1,NMILG,NG,NSMAX,IQUAD,FRTM,NS,IDIL,MIXGR,
1 RS,FRACT,SIGMA,SIGMS,P1I,P1DI,P1KI,SIGA1)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Calculation of the reduced collision probabilities for the She-Liu-Shi
* double heterogeneity model (part 1).
*
*Copyright:
* Copyright (C) 2019 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): R. Chambon
*
*Parameters: input
* IR1 number of elementary mixtures in the domain.
* NMILG number of composite mixtures in the domain.
* NG number of different kind of micro structures. A kind of
* micro structure is characterized by the radius of its
* micro volumes. All the micro volumes of the same kind
* should own the same nuclear properties in a given macro
* volume.
* NSMAX maximum number of volumes (tubes or shells) in each kind of
* micro structure.
* IQUAD quadrature parameter for the treatment of the micro volumes.
* if IQUAD < 0, lines with regular interval are applied.
* FRTM minimum volume fraction of the grain in the representative
* volume for She-Liu-Shi models.
* NS number of volumes in each kind of micro structure.
* IDIL elementary mixture indices in the diluent of the composite
* mixtures.
* MIXGR elementary mixture indices in the micro structures.
* RS radius of the micro volumes.
* FRACT volumic fractions of the micro volumes.
*
*Parameters: input/output
* SIGMA total macroscopic cross sections in each mixture of the
* composite geometry.
* SIGMS scattering macroscopic cross sections in each mixture of the
* composite geometry.
*
*Parameters: output
* P1I non collision probability in subvolume with 1 grain type.
* P1KI escape probability from layer k in subvolume
* with 1 grain type.
* P1DI escape probability from matrix in subvolume
* with 1 grain type.
* SIGA1 output cross sections.
*
*Reference:
* D. She, Z. Liu, and L. Shi, An Equivalent Homogenization Method for
* Treating the Stochastic Media, Nucl. Sci. Eng., 185, 351-360 (2018)
*
*-----------------------------------------------------------------------
*
IMPLICIT NONE
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR1,NMILG,NG,NSMAX,IQUAD,NS(NG),IDIL(NMILG),
1 MIXGR(NSMAX,NG,NMILG)
REAL FRTM,RS(NSMAX+1,NG),FRACT(NG,IR1+NMILG),SIGMA(0:IR1+NMILG),
1 SIGMS(0:IR1+NMILG),P1I(NG,NMILG),P1DI(NG,NMILG),
2 P1KI(NSMAX,NG,NMILG),SIGA1(NG,NMILG)
*----
* LOCAL VARIABLES
*----
INTEGER NR,IBM,J,K,N,M,MIL,NSMAX2
REAL DILF,DX,DXFACT,DRMIN,X,EP,EPI1,EPI2,LM,LGAR,SIGMA1,SIGMS1,
> FRT,RMAX,SIGT,XI,FRTT
DOUBLE PRECISION P1,P1D
REAL RGAR(NSMAX+2),LR(NSMAX+1)
*----
* ALLOCATABLE ARRAYS
*----
REAL, ALLOCATABLE, DIMENSION(:) :: SIG
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: P1K
*----
* SCRATCH STORAGE ALLOCATION
*----
NSMAX2=NSMAX+NG
ALLOCATE(SIG(NSMAX2),P1K(NSMAX2))
*----
* COMPUTE THE EQUIVALENT TOTAL AND SCATTERING CROSS SECTIONS
* IN COMPOSITE REGIONS
*----
DXFACT=100.0
IF(IQUAD.LT.0) DXFACT=REAL(-IQUAD)
DO 180 IBM=1,NMILG
MIL=IR1+IBM
SIGT=SIGMA(IDIL(IBM))
DILF=1.0
SIGMA(IR1+IBM)=0.0
SIGMS(IR1+IBM)=0.0
DO 10 J=1,NG
DILF=DILF-FRACT(J,MIL)
10 CONTINUE
DO 130 J=1,NG
FRT=FRACT(J,MIL)
IF(FRT.LE.0.00001) GO TO 130
NR=NS(J)
DRMIN=RS(NS(J)+1,J)
RGAR(1)=0.0
DO 15 K=2,NS(J)+1
DRMIN=MIN(DRMIN,RS(K,J)-RS(K-1,J))
RGAR(K)=RS(K,J)
15 CONTINUE
DO 20 K=1,NS(J)
P1K(K)=0.0D0
SIG(K)=SIGMA(MIXGR(K,J,IBM))
20 CONTINUE
FRTT=1.0-DILF
* FRT too small -> additional ring of matrix
IF((1.0-DILF).LT.FRTM) THEN
NR=NR+1
RGAR(NR+1)=RGAR(NR)*(FRTM/FRT)**(1.0/3.0)
SIG(NR)=SIGT
FRTT=FRTM
ENDIF
RMAX=RGAR(NR+1)
LGAR=4.0/3.0*RMAX/FRTT
P1=0.0D0
P1D=0.0D0
DX=DRMIN/DXFACT
XI=-0.5
K=1
* integral over radius to compute collision prob.
30 XI=XI+1.0
X=DX*XI
IF (X.GT.RGAR(K+1)) K=K+1
IF (K.GT.NR) GO TO 100
* Ref 1): Eq 13-17
* compute segment lengths
LM=LGAR/2.0
DO 40 N=1,NR
IF (N.LT.K) THEN
LR(N)=0.0D0
ELSEIF (N.EQ.K) THEN
LR(N)=(RGAR(N+1)**2.0 - X**2.0)**0.5
ELSE
LR(N)=(RGAR(N+1)**2.0 - X**2.0)**0.5
1 -(RGAR(N)**2.0 - X**2.0)**0.5
ENDIF
LM=LM-LR(N)
40 CONTINUE
* Ref 1): Eq 18-19
EP=2*SIGT*LM
DO 50 N=1,NR
EP=EP+2*LR(N)*SIG(N)
50 CONTINUE
P1=P1+X*DX*EXP(-EP)
DO 70 N=K,NR
EPI1=SIGT*LM
EPI2=SIGT*LM
DO 60 M=1,NR
IF (M.LT.N) THEN
EPI2=EPI2+2*LR(M)*SIG(M)
ELSEIF (M.EQ.N) THEN
EPI2=EPI2+LR(M)*SIG(M)
ELSE
EPI1=EPI1+LR(M)*SIG(M)
EPI2=EPI2+LR(M)*SIG(M)
ENDIF
60 CONTINUE
* bug
IF(N.GT.NSMAX2) CALL XABORT('XDRH13: NSMAX OVERFLOW.')
P1K(N)=P1K(N)+X*DX*(EXP(-EPI1)+EXP(-EPI2))*
1 (1.0D0-EXP(-LR(N)*SIG(N)))
70 CONTINUE
GO TO 30
100 CONTINUE
P1=P1*2/RMAX**2.0
P1I(J,IBM)=REAL(P1)
P1D=1.0D0-P1
DO 110 K=1,NS(J)
P1K(K)=P1K(K)*2/RMAX**2.0
P1KI(K,J,IBM)=REAL(P1K(K))
* collision prob. conservation, Ref 1): Eq 4
P1D=P1D-P1K(K)
110 CONTINUE
P1DI(J,IBM)=REAL(P1D)
* Ref 1): Eq 5
SIGMA1=REAL(-LOG(P1)/LGAR)
SIGA1(J,IBM)=SIGMA1
SIGMS1=REAL(P1D/(1.0-P1)*SIGMA1/SIGT*SIGMS(IDIL(IBM)))
DO 120 K=1,NS(J)
SIGMS1=REAL(SIGMS1+P1K(K)/(1.0-P1)*SIGMA1/SIG(K)*
1 SIGMS(MIXGR(K,J,IBM)))
120 CONTINUE
* Ref 1): Eq 26
SIGMA(IR1+IBM)=SIGMA(IR1+IBM)+SIGMA1*FRT/(1-DILF)
SIGMS(IR1+IBM)=SIGMS(IR1+IBM)+SIGMS1*FRT/(1-DILF)
130 CONTINUE
180 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(P1K,SIG)
RETURN
END
|