summaryrefslogtreecommitdiff
path: root/Dragon/src/XDRH11.f
blob: 23d872d1a412a7f33a51fa30ef668262f34e07c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
*DECK XDRH11
      SUBROUTINE XDRH11 (IR1,NMILG,NG,NSMAX,MICRO,IQUAD,NS,IDIL,MIXGR,
     1 RS,FRACT,VOLK,SIGMA,SIGMS,NCO,RRRR,QKOLD,QKDEL,PKL,COEF)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Calculation of the reduced collision probabilities for the Sanchez-
* Pomraning double heterogeneity model (part 1).
*
*Copyright:
* Copyright (C) 2007 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IR1     number of elementary mixtures in the domain.
* NMILG   number of composite mixtures in the domain.
* NG      number of different kind of micro structures. A kind of
*         micro structure is characterized by the radius of its
*         micro volumes. All the micro volumes of the same kind
*         should own the same nuclear properties in a given macro
*         volume.
* NSMAX   maximum number of volumes (tubes or shells) in each kind of
*         micro structure.
* MICRO   type of micro volumes (=3 cylinder; =4 sphere).
* IQUAD   quadrature parameter for the treatment of the micro volumes.
* NS      number of volumes in each kind of micro structure.
* IDIL    elementary mixture indices in the diluent of the composite
*         mixtures.
* MIXGR   elementary mixture indices in the micro structures.
* RS      radius of the micro volumes.
* FRACT   volumic fractions of the micro volumes.
* VOLK    volumic fractions of the tubes or shells in the micro volumes.
*
*Parameters: input/output
* SIGMA   total macroscopic cross sections in each mixture of the
*         composite geometry.
* SIGMS   scattering macroscopic cross sections in each mixture of the
*         composite geometry.
*
*Parameters: output
* NCO     number of volumes in each composite mixture.
* RRRR    information used by XDRH20, XDRH23, XDRH30 and XDRH33.
* QKOLD   information used by XDRH20, XDRH23, XDRH30 and XDRH33.
* QKDEL   information used by XDRH20, XDRH23, XDRH30 and XDRH33.
* PKL     information used by XDRH20, XDRH23, XDRH30 and XDRH33.
* COEF    information used by XDRH20, XDRH23, XDRH30 and XDRH33.
*
*References:
* R. Sanchez and G. C. Pomraning, A Statistical Analysis of the Double
* Heterogeneity Problem, Ann. Nucl. Energy, 18, 371-395 (1991).
* \\\\
* R. Sanchez and E. Masiello, Treatment of the Double Heterogeneity
* with the Method of Characteristics", PHYSOR 2002, Seoul, Korea (2002).
* \\\\
* R. Sanchez, Renormalized Treatment of the Double Heterogeneity with
* the Method of Characteristics, PHYSOR 2004, Chicago, USA (2004).
* 
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER IR1,NMILG,NG,NSMAX,MICRO,IQUAD,NS(NG),IDIL(NMILG),
     1 MIXGR(NSMAX,NG,NMILG),NCO(NMILG)
      REAL RS(NSMAX+1,NG),FRACT(NG,IR1+NMILG),VOLK(NG,NSMAX),
     1 SIGMA(0:IR1+NMILG),SIGMS(0:IR1+NMILG),RRRR(NMILG),
     2 QKOLD(NG,NSMAX,NMILG),QKDEL(NG,NSMAX,NMILG),
     3 PKL(NG,NSMAX,NSMAX,NMILG)
      DOUBLE PRECISION COEF(1+NG*NSMAX,1+NG*NSMAX,NMILG)
*----
*  LOCAL VARIABLES
*----
      PARAMETER(EPS1=1.0E-5)
      DOUBLE PRECISION DP0,DP1,DP1OLD,QKD,CHORD,CHORDK,DDOT
      REAL, ALLOCATABLE, DIMENSION(:) :: SIG,ZZ
      REAL, ALLOCATABLE, DIMENSION(:,:) :: QKN
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: RHS
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(QKN(NSMAX,NSMAX),RHS(1+NG*NSMAX))
*----
*  COMPUTE THE EQUIVALENT TOTAL CROSS SECTIONS IN COMPOSITE REGIONS
*----
      QKOLD(:NG,:NSMAX,:NMILG)=0.0
      QKDEL(:NG,:NSMAX,:NMILG)=0.0
      PKL(:NG,:NSMAX,:NSMAX,:NMILG)=0.0
      IPOW=MICRO-1
      DO 110 IBM=1,NMILG
      MIL=IR1+IBM
      DILF=1.0
      DO 10 J=1,NG
      DILF=DILF-FRACT(J,MIL)
   10 CONTINUE
      DP1OLD=0.0D0
      ITER=0
      DO
         ITER=ITER+1
         IF(ITER.GT.100) CALL XABORT('XDRH11: CONVERGENCE FAILURE.')
         DP1=DILF*SIGMA(IDIL(IBM))
         DO 80 J=1,NG
         FRT=FRACT(J,MIL)
         IF(FRT.LE.0.00001) GO TO 80
         ALLOCATE(SIG(NS(J)))
         CHORD=0.0D0
         DO 20 K=1,NS(J)
         SIG(K)=REAL(SIGMA(MIXGR(K,J,IBM))-DP1OLD)
         SIG(K)=MAX(0.0,SIG(K))
         CHORD=CHORD+(RS(K+1,J)**IPOW-RS(K,J)**IPOW)*SIG(K)
   20    CONTINUE
         CHORD=4.0D0*CHORD/(REAL(IPOW)*RS(NS(J)+1,J)**(IPOW-1))
         ALLOCATE(ZZ(1+IQUAD*((NS(J)*(5+NS(J)))/2)))
         IF(MICRO.EQ.3) THEN
            CALL SYBT1D(NS(J),RS(1,J),.FALSE.,IQUAD,ZZ)
            CALL SYBALC(NS(J),NSMAX,RS(1,J),SIG,IQUAD,0.0,ZZ,QKN)
         ELSE IF(MICRO.EQ.4) THEN
            CALL SYBT1D(NS(J),RS(1,J),.TRUE.,IQUAD,ZZ)
            CALL SYBALS(NS(J),NSMAX,RS(1,J),SIG,IQUAD,0.0,ZZ,QKN)
         ENDIF
         DEALLOCATE(ZZ)
         IF(CHORD.GE.1.0E4) THEN
            DO 25 K=1,NS(J)
            CHORDK=4.0D0*(RS(K+1,J)**IPOW-RS(K,J)**IPOW)/(REAL(IPOW)
     1      *RS(NS(J)+1,J)**(IPOW-1))
            QKDEL(J,K,IBM)=REAL(CHORDK/CHORD)
            DP1=DP1+FRT*VOLK(J,K)*QKDEL(J,K,IBM)*SIG(K)
   25       CONTINUE
         ELSE
            DO 40 K=1,NS(J)
            QKD=1.0D0
            DO 30 N=1,NS(J)
            QKD=QKD-QKN(K,N)*SIG(N)
   30       CONTINUE
            QKDEL(J,K,IBM)=REAL(QKD)
            DP1=DP1+FRT*VOLK(J,K)*QKDEL(J,K,IBM)*SIG(K)
   40       CONTINUE
         ENDIF
         IF(ITER.EQ.1) THEN
            DO 50 K=1,NS(J)
            QKOLD(J,K,IBM)=QKDEL(J,K,IBM)
   50       CONTINUE
            IF(CHORD.GE.1.0E4) THEN
               DO 60 K=1,NS(J)
               PKL(J,K,K,IBM)=1.0/SIGMA(MIXGR(K,J,IBM))
   60          CONTINUE
            ELSE
               DO 75 K=1,NS(J)
               DO 70 N=1,NS(J)
               PKL(J,K,N,IBM)=QKN(K,N)
   70          CONTINUE
   75          CONTINUE
            ENDIF
         ENDIF
         DEALLOCATE(SIG)
   80    CONTINUE
         IF(ABS(DP1OLD-DP1/DILF).LE.EPS1*ABS(DP1)) EXIT
         DP1OLD=DP1/DILF
      ENDDO
      RRRR(IBM)=DILF
      SIGMIN=REAL(DP1)/DILF
      DO 100 J=1,NG
      FRT=FRACT(J,MIL)
      IF(FRT.LE.0.00001) GO TO 100
      DO 90 K=1,NS(J)
      RRRR(IBM)=RRRR(IBM)+FRT*VOLK(J,K)*QKDEL(J,K,IBM)
      SIGMIN=MIN(SIGMIN,SIGMA(MIXGR(K,J,IBM)))
   90 CONTINUE
  100 CONTINUE
      IF((SIGMIN*(1.0+EPS1).LT.DP1/DILF).AND.(MICRO.EQ.3)) THEN
         CALL XABORT('XDRH11: SANCHEZ-POMRANING MODEL FAILURE.')
      ENDIF
      SIGMA(IR1+IBM)=REAL(DP1)/DILF
  110 CONTINUE
*----
*  COMPUTE THE EQUIVALENT SCATTERING CROSS SECTIONS IN COMPOSITE REGIONS
*----
      COEF(:1+NG*NSMAX,:1+NG*NSMAX,:NMILG)=0.0D0
      DO 170 IBM=1,NMILG
      MIL=IR1+IBM
      NCO(IBM)=1
      DILF=1.0
      DP0=0.0D0
      DO 130 J=1,NG
      FRT=FRACT(J,MIL)
      DILF=DILF-FRT
      IF(FRT.LE.0.00001) GO TO 130
      DO 120 K=1,NS(J)
      DP0=DP0+FRT*VOLK(J,K)*QKOLD(J,K,IBM)*SIGMA(MIXGR(K,J,IBM))
  120 CONTINUE
  130 CONTINUE
      DP0=DP0+DILF*SIGMA(IDIL(IBM))
      COEF(1,1,IBM)=1.0D0
      RHS(1)=DILF*SIGMS(IDIL(IBM))/DP0
      IND2=1
      DO 160 J=1,NG
      FRT=FRACT(J,MIL)
      IF(FRT.LE.0.00001) GO TO 160
      DO 150 K=1,NS(J)
      NCO(IBM)=NCO(IBM)+1
      COEF(1,IND2+K,IBM)=-FRT*VOLK(J,K)*QKOLD(J,K,IBM)*
     1 SIGMS(MIXGR(K,J,IBM))/DP0
      COEF(IND2+K,IND2+K,IBM)=1.0D0
      DO 140 N=1,NS(J)
      COEF(IND2+K,IND2+N,IBM)=COEF(IND2+K,IND2+N,IBM)
     1 -PKL(J,K,N,IBM)*SIGMS(MIXGR(N,J,IBM))
  140 CONTINUE
      COEF(IND2+K,1,IBM)=-(QKOLD(J,K,IBM)-QKDEL(J,K,IBM))
      RHS(IND2+K)=QKDEL(J,K,IBM)
  150 CONTINUE
      IND2=IND2+NS(J)
  160 CONTINUE
      CALL ALINVD(NCO(IBM),COEF(1,1,IBM),1+NG*NSMAX,IER)
      IF(IER.NE.0) CALL XABORT('XDRH11: SINGULAR MATRIX.')
      DP0=DDOT(NCO(IBM),COEF(1,1,IBM),1+NG*NSMAX,RHS,1)
      SIGMS(IR1+IBM)=REAL(DP0)*SIGMA(IR1+IBM)
  170 CONTINUE
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(RHS,QKN)
      RETURN
      END