1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
*DECK XDRH11
SUBROUTINE XDRH11 (IR1,NMILG,NG,NSMAX,MICRO,IQUAD,NS,IDIL,MIXGR,
1 RS,FRACT,VOLK,SIGMA,SIGMS,NCO,RRRR,QKOLD,QKDEL,PKL,COEF)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Calculation of the reduced collision probabilities for the Sanchez-
* Pomraning double heterogeneity model (part 1).
*
*Copyright:
* Copyright (C) 2007 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IR1 number of elementary mixtures in the domain.
* NMILG number of composite mixtures in the domain.
* NG number of different kind of micro structures. A kind of
* micro structure is characterized by the radius of its
* micro volumes. All the micro volumes of the same kind
* should own the same nuclear properties in a given macro
* volume.
* NSMAX maximum number of volumes (tubes or shells) in each kind of
* micro structure.
* MICRO type of micro volumes (=3 cylinder; =4 sphere).
* IQUAD quadrature parameter for the treatment of the micro volumes.
* NS number of volumes in each kind of micro structure.
* IDIL elementary mixture indices in the diluent of the composite
* mixtures.
* MIXGR elementary mixture indices in the micro structures.
* RS radius of the micro volumes.
* FRACT volumic fractions of the micro volumes.
* VOLK volumic fractions of the tubes or shells in the micro volumes.
*
*Parameters: input/output
* SIGMA total macroscopic cross sections in each mixture of the
* composite geometry.
* SIGMS scattering macroscopic cross sections in each mixture of the
* composite geometry.
*
*Parameters: output
* NCO number of volumes in each composite mixture.
* RRRR information used by XDRH20, XDRH23, XDRH30 and XDRH33.
* QKOLD information used by XDRH20, XDRH23, XDRH30 and XDRH33.
* QKDEL information used by XDRH20, XDRH23, XDRH30 and XDRH33.
* PKL information used by XDRH20, XDRH23, XDRH30 and XDRH33.
* COEF information used by XDRH20, XDRH23, XDRH30 and XDRH33.
*
*References:
* R. Sanchez and G. C. Pomraning, A Statistical Analysis of the Double
* Heterogeneity Problem, Ann. Nucl. Energy, 18, 371-395 (1991).
* \\\\
* R. Sanchez and E. Masiello, Treatment of the Double Heterogeneity
* with the Method of Characteristics", PHYSOR 2002, Seoul, Korea (2002).
* \\\\
* R. Sanchez, Renormalized Treatment of the Double Heterogeneity with
* the Method of Characteristics, PHYSOR 2004, Chicago, USA (2004).
*
*-----------------------------------------------------------------------
*
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IR1,NMILG,NG,NSMAX,MICRO,IQUAD,NS(NG),IDIL(NMILG),
1 MIXGR(NSMAX,NG,NMILG),NCO(NMILG)
REAL RS(NSMAX+1,NG),FRACT(NG,IR1+NMILG),VOLK(NG,NSMAX),
1 SIGMA(0:IR1+NMILG),SIGMS(0:IR1+NMILG),RRRR(NMILG),
2 QKOLD(NG,NSMAX,NMILG),QKDEL(NG,NSMAX,NMILG),
3 PKL(NG,NSMAX,NSMAX,NMILG)
DOUBLE PRECISION COEF(1+NG*NSMAX,1+NG*NSMAX,NMILG)
*----
* LOCAL VARIABLES
*----
PARAMETER(EPS1=1.0E-5)
DOUBLE PRECISION DP0,DP1,DP1OLD,QKD,CHORD,CHORDK,DDOT
REAL, ALLOCATABLE, DIMENSION(:) :: SIG,ZZ
REAL, ALLOCATABLE, DIMENSION(:,:) :: QKN
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: RHS
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(QKN(NSMAX,NSMAX),RHS(1+NG*NSMAX))
*----
* COMPUTE THE EQUIVALENT TOTAL CROSS SECTIONS IN COMPOSITE REGIONS
*----
QKOLD(:NG,:NSMAX,:NMILG)=0.0
QKDEL(:NG,:NSMAX,:NMILG)=0.0
PKL(:NG,:NSMAX,:NSMAX,:NMILG)=0.0
IPOW=MICRO-1
DO 110 IBM=1,NMILG
MIL=IR1+IBM
DILF=1.0
DO 10 J=1,NG
DILF=DILF-FRACT(J,MIL)
10 CONTINUE
DP1OLD=0.0D0
ITER=0
DO
ITER=ITER+1
IF(ITER.GT.100) CALL XABORT('XDRH11: CONVERGENCE FAILURE.')
DP1=DILF*SIGMA(IDIL(IBM))
DO 80 J=1,NG
FRT=FRACT(J,MIL)
IF(FRT.LE.0.00001) GO TO 80
ALLOCATE(SIG(NS(J)))
CHORD=0.0D0
DO 20 K=1,NS(J)
SIG(K)=REAL(SIGMA(MIXGR(K,J,IBM))-DP1OLD)
SIG(K)=MAX(0.0,SIG(K))
CHORD=CHORD+(RS(K+1,J)**IPOW-RS(K,J)**IPOW)*SIG(K)
20 CONTINUE
CHORD=4.0D0*CHORD/(REAL(IPOW)*RS(NS(J)+1,J)**(IPOW-1))
ALLOCATE(ZZ(1+IQUAD*((NS(J)*(5+NS(J)))/2)))
IF(MICRO.EQ.3) THEN
CALL SYBT1D(NS(J),RS(1,J),.FALSE.,IQUAD,ZZ)
CALL SYBALC(NS(J),NSMAX,RS(1,J),SIG,IQUAD,0.0,ZZ,QKN)
ELSE IF(MICRO.EQ.4) THEN
CALL SYBT1D(NS(J),RS(1,J),.TRUE.,IQUAD,ZZ)
CALL SYBALS(NS(J),NSMAX,RS(1,J),SIG,IQUAD,0.0,ZZ,QKN)
ENDIF
DEALLOCATE(ZZ)
IF(CHORD.GE.1.0E4) THEN
DO 25 K=1,NS(J)
CHORDK=4.0D0*(RS(K+1,J)**IPOW-RS(K,J)**IPOW)/(REAL(IPOW)
1 *RS(NS(J)+1,J)**(IPOW-1))
QKDEL(J,K,IBM)=REAL(CHORDK/CHORD)
DP1=DP1+FRT*VOLK(J,K)*QKDEL(J,K,IBM)*SIG(K)
25 CONTINUE
ELSE
DO 40 K=1,NS(J)
QKD=1.0D0
DO 30 N=1,NS(J)
QKD=QKD-QKN(K,N)*SIG(N)
30 CONTINUE
QKDEL(J,K,IBM)=REAL(QKD)
DP1=DP1+FRT*VOLK(J,K)*QKDEL(J,K,IBM)*SIG(K)
40 CONTINUE
ENDIF
IF(ITER.EQ.1) THEN
DO 50 K=1,NS(J)
QKOLD(J,K,IBM)=QKDEL(J,K,IBM)
50 CONTINUE
IF(CHORD.GE.1.0E4) THEN
DO 60 K=1,NS(J)
PKL(J,K,K,IBM)=1.0/SIGMA(MIXGR(K,J,IBM))
60 CONTINUE
ELSE
DO 75 K=1,NS(J)
DO 70 N=1,NS(J)
PKL(J,K,N,IBM)=QKN(K,N)
70 CONTINUE
75 CONTINUE
ENDIF
ENDIF
DEALLOCATE(SIG)
80 CONTINUE
IF(ABS(DP1OLD-DP1/DILF).LE.EPS1*ABS(DP1)) EXIT
DP1OLD=DP1/DILF
ENDDO
RRRR(IBM)=DILF
SIGMIN=REAL(DP1)/DILF
DO 100 J=1,NG
FRT=FRACT(J,MIL)
IF(FRT.LE.0.00001) GO TO 100
DO 90 K=1,NS(J)
RRRR(IBM)=RRRR(IBM)+FRT*VOLK(J,K)*QKDEL(J,K,IBM)
SIGMIN=MIN(SIGMIN,SIGMA(MIXGR(K,J,IBM)))
90 CONTINUE
100 CONTINUE
IF((SIGMIN*(1.0+EPS1).LT.DP1/DILF).AND.(MICRO.EQ.3)) THEN
CALL XABORT('XDRH11: SANCHEZ-POMRANING MODEL FAILURE.')
ENDIF
SIGMA(IR1+IBM)=REAL(DP1)/DILF
110 CONTINUE
*----
* COMPUTE THE EQUIVALENT SCATTERING CROSS SECTIONS IN COMPOSITE REGIONS
*----
COEF(:1+NG*NSMAX,:1+NG*NSMAX,:NMILG)=0.0D0
DO 170 IBM=1,NMILG
MIL=IR1+IBM
NCO(IBM)=1
DILF=1.0
DP0=0.0D0
DO 130 J=1,NG
FRT=FRACT(J,MIL)
DILF=DILF-FRT
IF(FRT.LE.0.00001) GO TO 130
DO 120 K=1,NS(J)
DP0=DP0+FRT*VOLK(J,K)*QKOLD(J,K,IBM)*SIGMA(MIXGR(K,J,IBM))
120 CONTINUE
130 CONTINUE
DP0=DP0+DILF*SIGMA(IDIL(IBM))
COEF(1,1,IBM)=1.0D0
RHS(1)=DILF*SIGMS(IDIL(IBM))/DP0
IND2=1
DO 160 J=1,NG
FRT=FRACT(J,MIL)
IF(FRT.LE.0.00001) GO TO 160
DO 150 K=1,NS(J)
NCO(IBM)=NCO(IBM)+1
COEF(1,IND2+K,IBM)=-FRT*VOLK(J,K)*QKOLD(J,K,IBM)*
1 SIGMS(MIXGR(K,J,IBM))/DP0
COEF(IND2+K,IND2+K,IBM)=1.0D0
DO 140 N=1,NS(J)
COEF(IND2+K,IND2+N,IBM)=COEF(IND2+K,IND2+N,IBM)
1 -PKL(J,K,N,IBM)*SIGMS(MIXGR(N,J,IBM))
140 CONTINUE
COEF(IND2+K,1,IBM)=-(QKOLD(J,K,IBM)-QKDEL(J,K,IBM))
RHS(IND2+K)=QKDEL(J,K,IBM)
150 CONTINUE
IND2=IND2+NS(J)
160 CONTINUE
CALL ALINVD(NCO(IBM),COEF(1,1,IBM),1+NG*NSMAX,IER)
IF(IER.NE.0) CALL XABORT('XDRH11: SINGULAR MATRIX.')
DP0=DDOT(NCO(IBM),COEF(1,1,IBM),1+NG*NSMAX,RHS,1)
SIGMS(IR1+IBM)=REAL(DP0)*SIGMA(IR1+IBM)
170 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(RHS,QKN)
RETURN
END
|