1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
*DECK XCGROD
SUBROUTINE XCGROD(NRT,MSROD,NRODS,RODS,MATROD,RODR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Check geometry and reorder rod clusters if necessary.
*
*Copyright:
* Copyright (C) 1994 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): G. Marleau
*
*Parameters: input
* NRT number of rod types.
* MSROD maximum number of subrods per rods.
*
*Parameters: input/output
* NRODS integer description of rod of a given type:
* NRODS(1,IRT) = number of rod;
* NRODS(2,IRT) = number of subrods in rod;
* NRODS(3,IRT) = first concentric region.
* RODS real description of rod of a given type:
* RODS(1,IRT) = rod center radius;
* RODS(2,IRT) = angular position of first rod.
* MATROD type of material for each subrod.
* RODR subrod radius.
*
*----------------------------------------------------------------------
*
INTEGER IOUT
REAL PI
PARAMETER (IOUT=6,PI=3.1415926535898)
INTEGER NRT,NRODS(3,NRT),MATROD(MSROD,NRT)
REAL RODS(2,NRT),RODR(MSROD,NRT)
INTEGER, ALLOCATABLE, DIMENSION(:) :: IORD
*----
* SCRATCH STORAGE ALLOCATION
* IORD : NEW ROD CLUSTER ORDER I(NRT)
*----
ALLOCATE(IORD(NRT))
*----
* CLASSIFY ROD CLUSTER BY INCREASING DISTANCE OF CENTER AND ANGLE
*----
DO 100 IRT=1,NRT
IORD(IRT)=IRT
100 CONTINUE
DO 110 IRT=2,NRT
REFR=RODS(1,IRT)
REFA=RODS(2,IRT)
IPOS=IORD(IRT)
DO 111 JRT=IRT-1,1,-1
KRT=JRT
IF(RODS(1,JRT).GT.REFR) THEN
RODS(1,JRT+1)=RODS(1,JRT)
RODS(2,JRT+1)=RODS(2,JRT)
IORD(JRT+1)=IORD(JRT)
ELSE IF(RODS(1,JRT).EQ.REFR) THEN
IPOS=-IPOS
GO TO 112
ELSE
GO TO 112
ENDIF
111 CONTINUE
KRT=0
112 CONTINUE
RODS(1,KRT+1)=REFR
RODS(2,KRT+1)=REFA
IORD(KRT+1)=IPOS
IF(IPOS.LT.0) THEN
DO 113 JRT=KRT,1,-1
LRT=JRT
IF((RODS(2,JRT).GT.REFA).AND.
> (RODS(1,JRT).EQ.REFR)) THEN
RODS(1,JRT+1)=RODS(1,JRT)
RODS(2,JRT+1)=RODS(2,JRT)
IORD(JRT+1)=IORD(JRT)
ELSE
GO TO 114
ENDIF
113 CONTINUE
LRT=0
114 CONTINUE
RODS(1,LRT+1)=REFR
RODS(2,LRT+1)=REFA
IORD(LRT+1)=-IPOS
ENDIF
110 CONTINUE
*----
* REORDER REMAINING VECTORS NRODS,MATROD,RODR
*----
DO 140 IRT=1,NRT
JRT=IORD(IRT)
IF(JRT.NE.IRT) THEN
DO 141 IX=1,3
NNR=NRODS(IX,IRT)
NRODS(IX,IRT)=NRODS(IX,JRT)
NRODS(IX,JRT)=NNR
141 CONTINUE
DO 142 IS=1,MSROD
MATT=MATROD(IS,IRT)
MATROD(IS,IRT)=MATROD(IS,JRT)
MATROD(IS,JRT)=MATT
RROD=RODR(IS,IRT)
RODR(IS,IRT)=RODR(IS,JRT)
RODR(IS,JRT)=RROD
142 CONTINUE
DO 143 KRT=IRT+1,NRT
IF(IORD(KRT).EQ.IRT) THEN
IORD(KRT)=JRT
IORD(IRT)=IRT
GO TO 144
ENDIF
143 CONTINUE
144 CONTINUE
ENDIF
140 CONTINUE
*----
* FIND IF ROD OVERLAPP
*----
DO 150 IRT=1,NRT
NRDB=NRODS(1,IRT)
NSBRB=NRODS(2,IRT)
RODRB=RODR(NSBRB,IRT)
RODRB2=RODRB*RODRB
RDPB=RODS(1,IRT)
XBOT=RDPB-RODRB
DANGB=2.*PI/FLOAT(NRDB)
ANGB=RODS(2,IRT)
*----
* CHECK FOR ROD OVERLAPP INSIDE EACH CLUSTER
*----
IF(NRDB.GT.1) THEN
IF(RODRB.GT.RDPB) THEN
WRITE(IOUT,'(1X,24HROD OVERLAP IN CLUSTER =,I10)') IRT
CALL XABORT('XCGROD: ROD OVERLAP IN A CLUSTER')
ELSE
ANGMIN=2.*ASIN(RODRB/RDPB)
IF(DANGB.LE.ANGMIN) THEN
WRITE(IOUT,'(1X,24HROD OVERLAP IN CLUSTER =,I10)') IRT
CALL XABORT('XCGROD: ROD OVERLAP IN A CLUSTER')
ENDIF
ENDIF
ENDIF
*----
* CHECK FOR ROD OVERLAPP BETWEEN DIFFERENT CLUSTERS
*----
DO 151 JRT=IRT-1,1,-1
NRDT=NRODS(1,JRT)
NSBRT=NRODS(2,JRT)
RODRT=RODR(NSBRT,JRT)
RODRT2=RODRT*RODRT
RDPT=RODS(1,JRT)
XTOP=RDPT+RODRT
DANGT=2.*PI/FLOAT(NRDT)
ANGT=RODS(2,JRT)
*----
* NO OVERLAPP
*----
IF(XTOP.LT.XBOT) GO TO 152
*----
* SOME OVERLAPP POSSIBLE TEST FOR INTERSECTION
*----
ANG1=ANGB
DO 160 IA1=1,NRDB
*----
* FIND POSITION OF ROD (X0,Y0)
*----
X01=RDPB*COS(ANG1)
Y01=RDPB*SIN(ANG1)
RRX=RODRB2-X01*X01
RRY=RODRB2-Y01*Y01
XY=X01*Y01
RR1=(RRX-Y01*Y01)
ANG2=ANGT
DO 161 IA2=1,NRDT
X02=RDPT*COS(ANG2)
Y02=RDPT*SIN(ANG2)
RR2=(RODRT2-X02*X02-Y02*Y02)
*----
* CHECK FOR ROD INSIDE ROD
*----
DELX=X02-X01
DELY=Y02-Y01
DIST=SQRT(DELX**2+DELY**2)
IF(DIST.LT.RODRT+RODRB) THEN
WRITE(IOUT,'(1X,25HROD OVERLAP IN CLUSTERS =,2I10)')
> IRT,JRT
CALL XABORT('XCGROD: ROD OVERLAP IN 2 CLUSTERS')
ENDIF
*----
* FIND IF CIRCLES
* (X-X01)**2+(Y-Y01)**2=RODRB*2
* (X-X02)**2+(Y-Y02)**2=RODRT*2
* INTERSECT
*----
IF(X02.NE.X01) THEN
CCR=1./DELX
BBR=-DELY*CCR
AAR=0.5*CCR*(RR1-RR2)
ARGSQ=AAR*(2.*X01-2.*BBR*Y01-AAR)
> +BBR*(BBR*RRY+2.*XY)+RRX
ELSE
CCR=1./DELY
BBR=-DELX*CCR
AAR=0.5*CCR*(RR1-RR2)
ARGSQ=AAR*(2.*Y01-2.*BBR*X01-AAR)
> +BBR*(BBR*RRX+2.*XY)+RRY
ENDIF
IF(ARGSQ.GE.0.0) THEN
WRITE(IOUT,'(1X,25HROD OVERLAP IN CLUSTERS =,2I10)')
> IRT,JRT
CALL XABORT('XCGROD: ROD OVERLAP IN 2 CLUSTERS')
ENDIF
ANG2=ANG2+DANGT
161 CONTINUE
ANG1=ANG1+DANGB
160 CONTINUE
151 CONTINUE
152 CONTINUE
150 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(IORD)
*----
* RETURN
*----
RETURN
END
|