summaryrefslogtreecommitdiff
path: root/Dragon/src/USSRSE.f
blob: aa0f60ef12eae845a3800a3fda4c88d1ac64f456 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
*DECK USSRSE
      SUBROUTINE USSRSE(IPTRK,IPLIB,IPLI0,IFTRAK,NREG,NUN,NBMIX,NBISO,
     1 NIRES,NL,NED,NDEL,ISONAM,ISOBIS,HCAL,MAT,VOL,KEYFLX,CDOOR,
     2 LEAKSW,IMPX,DEN,MIX,IAPT,IPHASE,NGRP,IGRMIN,IGRMAX,NBNRS,IREX,
     3 TITR,ICORR,MAXST,GOLD,UNGAR,PHGAR,STGAR,SFGAR,SSGAR,S0GAR,SAGAR,
     4 SDGAR,MASKG,SIGGAR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the self-shielded cross sections in each energy group using
* the resonance spectrum expansion method.
*
*Copyright:
* Copyright (C) 2023 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK   pointer to the tracking (L_TRACK signature).
* IPLIB   pointer to the internal microscopic cross section library
*         with subgroups (L_LIBRARY signature).
* IPLI0   pointer to the internal microscopic cross section library
*         builded by the self-shielding module.
* IFTRAK  file unit number used to store the tracks.
* NREG    number of regions.
* NUN     number of unknowns per energy group and band.
* NBMIX   number of mixtures in the internal library.
* NBISO   number of isotopes.
* NIRES   number of correlated resonant isotopes.
* NL      number of legendre orders required in the calculation
*         (NL=1 or higher).
* NED     number of extra vector edits.
* NDEL    number of delayed neutron precursor groups.
* ISONAM  alias name of isotopes in IPLIB.
* ISOBIS  alias name of isotopes in IPLI0.
* HCAL    name of the self-shielding calculation.
* MAT     index-number of the mixture type assigned to each volume.
* VOL     volumes.
* KEYFLX  pointers of fluxes in unknown vector.
* CDOOR   name of the geometry/solution operator.
* LEAKSW  leakage flag (LEAKSW=.true. if neutron leakage through
*         external boundary is present).
* IMPX    print flag (equal to zero for no print).
* DEN     density of each isotope.
* MIX     mix number of each isotope (can be zero).
* IAPT    resonant isotope index associated with isotope I. Mixed
*         moderator if IAPT(I)=NIRES+1. Out-of-fuel isotope if
*         IAPT(I)=0.
* IPHASE  type of flux solution (=1 use a native flux solution door;
*         =2 use collision probabilities).
* NGRP    number of energy groups.
* IGRMIN  first group where the self-shielding is applied.
* IGRMAX  most thermal group where the self-shielding is applied.
* NBNRS   number of correlated fuel regions. Note that NBNRS=max(IREX).
* IREX    fuel region index assigned to each mixture. Equal to zero
*         in non-resonant mixtures or in mixtures not used.
* TITR    title.
* ICORR   mutual resonance shielding flag (=1 to suppress the model
*         in cases it is required in LIB operator).
* MAXST   maximum number of fixed point iterations for the ST scattering
*         source.
*
*Parameters: output
* GOLD    Goldstein-Cohen parameters.
* UNGAR   averaged flux unknowns.
* PHGAR   averaged fluxes in correlated fuel regions.
* STGAR   microscopic self-shielded total x-s.
* SFGAR   microscopic self-shielded fission x-s.
* SSGAR   microscopic self-shielded scattering x-s.
* S0GAR   microscopic transfer scattering xs (isotope,secondary,
*         primary).
* SAGAR   microscopic self-shielded additional xs.
* SDGAR   microscopic self-shielded delayed nu-sigf xs.
* MASKG   energy group mask pointing on self-shielded groups.
* SIGGAR  macroscopic x-s of the non-resonant isotopes in each mixture:
*         (*,*,*,1) total; (*,*,*,2) transport correction; 
*         (*,*,*,3) P0 scattering; (*,*,*,4) flux times P0 scattering.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPTRK,IPLIB,IPLI0
      INTEGER IFTRAK,NREG,NUN,NBMIX,NBISO,NIRES,NL,NED,NDEL,
     1 ISONAM(3,NBISO),ISOBIS(3,NBISO),MAT(NREG),KEYFLX(NREG),IMPX,
     2 MIX(NBISO),IAPT(NBISO),IPHASE,NGRP,IGRMIN,IGRMAX,NBNRS,
     3 IREX(NBMIX),ICORR,MAXST
      REAL VOL(NREG),DEN(NBISO),GOLD(NIRES,NGRP),UNGAR(NUN,NIRES,NGRP),
     1 PHGAR(NBNRS,NIRES,NGRP),STGAR(NBNRS,NIRES,NGRP),
     2 SFGAR(NBNRS,NIRES,NGRP),SSGAR(NBNRS,NIRES,NL,NGRP),
     3 S0GAR(NBNRS,NIRES,NL,NGRP,NGRP),SAGAR(NBNRS,NIRES,NED,NGRP),
     4 SDGAR(NBNRS,NIRES,NDEL,NGRP),SIGGAR(NBMIX,0:NIRES,NGRP,4)
      LOGICAL LEAKSW,MASKG(NGRP,NIRES)
      CHARACTER HCAL*12,CDOOR*12,TITR*72
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) IPP,KPLIB,LPLIB,MPLIB,JPLI0,KPLI0,IOFSET
      LOGICAL LLIB
      PARAMETER (MAXED=50,MAXNOR=20)
      CHARACTER TEXT12*12,HVECT(MAXED)*8,CBDPNM*12,HSMG*131
*----
*  ALLOCATABLE ARRAYS
*----
      TYPE(C_PTR), ALLOCATABLE, DIMENSION(:) :: IPPT1,IPISO1,IPISO2
      INTEGER, ALLOCATABLE, DIMENSION(:) :: IWRK
      INTEGER, ALLOCATABLE, DIMENSION(:,:) :: NOR,IPPT2,ISM
      REAL, ALLOCATABLE, DIMENSION(:) :: GAS,GA1,VOLMER,DELTAU,GOLD2
      REAL, ALLOCATABLE, DIMENSION(:,:) :: GA2,CONR,XFLUX
      TYPE VECTOR_ARRAY
        DOUBLE PRECISION, POINTER, DIMENSION(:) :: VECTOR
      END TYPE VECTOR_ARRAY
      TYPE(VECTOR_ARRAY), ALLOCATABLE, DIMENSION(:,:) :: GAMMA_V
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(IPPT1(NIRES))
      ALLOCATE(NOR(NIRES,NGRP),IPPT2(NIRES,5),IWRK(NGRP),ISM(2,NL))
      ALLOCATE(GAS(NGRP),GA1(NGRP),GA2(NGRP,NGRP),CONR(NBNRS,NIRES),
     1 VOLMER(0:NBNRS),DELTAU(NGRP),GAMMA_V(NGRP,NIRES))
      ALLOCATE(IPISO1(NBISO),IPISO2(NBISO))
*
      CALL KDRCPU(TK1)
      PHGAR(:NBNRS,:NIRES,:NGRP)=1.0
      NOR(:NIRES,1)=-1
*
      IF(NED.GT.0) THEN
        IF(NED.GT.MAXED) CALL XABORT('USSRSE: INVALID VALUE OF MAXED.')
        CALL LCMGTC(IPLIB,'ADDXSNAME-P0',8,NED,HVECT)
      ENDIF
*
      CALL LIBIPS(IPLIB,NBISO,IPISO1)
      CALL LIBIPS(IPLI0,NBISO,IPISO2)
      SIGGAR(:NBMIX,0:NIRES,:NGRP,:4)=0.0
      DO 190 ISO=1,NBISO
      IBM=MIX(ISO)
      DO 30 I=1,NREG
      IF(MAT(I).EQ.IBM) GO TO 35
   30 CONTINUE
      GO TO 190
   35 IRES=IAPT(ISO)
      DENN=DEN(ISO)
      JRES=IRES
      IF(IRES.EQ.NIRES+1) JRES=0
*----
*  RECOVER INFINITE DILUTION OR SELF-SHIELDED CROSS SECTIONS AND
*  COMPUTE OUT-OF-FUEL MACROSCOPIC CROSS SECTIONS.
*----
      KPLI0=IPISO2(ISO) ! set ISO-th isotope
      IF(C_ASSOCIATED(KPLI0)) THEN
         CALL LCMLEN(KPLI0,'NTOT0',ILEN0,ITYLCM)
         IF(ILEN0.NE.0) THEN
            LLIB=.FALSE.
            IPP=KPLI0
         ELSE
            LLIB=.TRUE.
            IPP=IPISO1(ISO) ! set ISO-th isotope
         ENDIF
      ELSE
         LLIB=.TRUE.
         IPP=IPISO1(ISO) ! set ISO-th isotope
      ENDIF
      IF(LLIB.AND.(.NOT.C_ASSOCIATED(IPP))) THEN
         WRITE(HSMG,'(18H USSRSE: ISOTOPE '',3A4,7H'' (ISO=,I8,5H) IS ,
     1   39HNOT AVAILABLE IN THE ORIGINAL MICROLIB.)') (ISONAM(I0,ISO),
     2   I0=1,3),ISO
         CALL XABORT(HSMG)
      ENDIF
      IF((.NOT.LLIB).AND.(IMPX.GT.2)) WRITE(6,'(/18H USSRSE: RECOVER I,
     1 8HSOTOPE '',3A4,23H'' FROM THE NEW LIBRARY.)') (ISOBIS(I0,ISO),
     2 I0=1,3)
      IF((DENN.NE.0.0).AND.(IBM.NE.0)) THEN
         CALL LCMLEN(IPP,'NTOT0',ILENGT,ITYLCM)
         IF(ILENGT.NE.NGRP) THEN
           CALL LCMLIB(IPP)
           CALL XABORT('USSRSE: INVALID X-SECTIONS.')
         ENDIF
         CALL LCMGET(IPP,'NTOT0',GA1)
         CALL XDRLGS(IPP,-1,IMPX,0,0,1,NGRP,GAS,GA2,ITYPRO)
         DO 40 IGRP=1,NGRP
         SIGGAR(IBM,JRES,IGRP,1)=SIGGAR(IBM,JRES,IGRP,1)+DENN*GA1(IGRP)
   40    CONTINUE
         CALL LCMGET(IPP,'SIGS00',GA1)
         CALL LCMLEN(IPP,'NWT0',ILENGT,ITYLCM)
         IF(ILENGT.GT.0) THEN
            CALL LCMGET(IPP,'NWT0',GAS)
         ELSE
            GAS(:NGRP)=1.0
         ENDIF
         DO 45 IGRP=1,NGRP
         SIGGAR(IBM,JRES,IGRP,3)=SIGGAR(IBM,JRES,IGRP,3)+DENN*GA1(IGRP)
         DO 44 JGRP=1,IGRP
         SIGGAR(IBM,JRES,IGRP,4)=SIGGAR(IBM,JRES,IGRP,4)+DENN*
     1   GA2(IGRP,JGRP)*GAS(JGRP)
   44    CONTINUE
   45    CONTINUE
         CALL LCMLEN(IPP,'TRANC',ILENGT,ITYLCM)
         IF(ILENGT.GT.0) THEN
            CALL LCMGET(IPP,'TRANC',GA1)
         ELSE
            GA1(:NGRP)=0.0
         ENDIF
         DO 50 IGRP=1,NGRP
         SIGGAR(IBM,JRES,IGRP,2)=SIGGAR(IBM,JRES,IGRP,2)+DENN*GA1(IGRP)
   50    CONTINUE
      ENDIF
      CALL LCMGET(IPLI0,'DELTAU',DELTAU)
*----
*  RECOVER PROBABILITY TABLE INFORMATION.
*----
      IF((IRES.GT.0).AND.(IRES.LE.NIRES)) THEN
         IF(NOR(IRES,1).EQ.-1) THEN
            KPLIB=IPISO1(ISO) ! set ISO-th isotope
*
*           RECOVER INFINITE DILUTION VALUES.
            CALL LCMGET(KPLIB,'NTOT0',GAS)
            DO 55 IGRP=1,NGRP
            STGAR(:NBNRS,IRES,IGRP)=0.0
            STGAR(:NBNRS,IRES,IGRP)=GAS(IGRP)
            SFGAR(:NBNRS,IRES,IGRP)=0.0
            SAGAR(:NBNRS,IRES,:NED,IGRP)=0.0
            SDGAR(:NBNRS,IRES,:NDEL,IGRP)=0.0
   55       CONTINUE
            CALL LCMLEN(KPLIB,'NUSIGF',ILENGT,ITYLCM)
            IF(ILENGT.GT.0) THEN
               CALL LCMGET(KPLIB,'NUSIGF',GAS)
               DO 60 IGRP=1,NGRP
               SFGAR(:NBNRS,IRES,IGRP)=GAS(IGRP)
   60          CONTINUE
            ENDIF
            DO 80 IL=1,NL
            CALL XDRLGS(KPLIB,-1,IMPX,IL-1,IL-1,1,NGRP,GAS,GA2,ITYPRO)
*           JG IS THE SECONDARY GROUP.
            DO 72 IGRP=1,NGRP
            SSGAR(:NBNRS,IRES,IL,IGRP)=GAS(IGRP)
            DO 70 JGRP=1,NGRP
            S0GAR(:NBNRS,IRES,IL,JGRP,IGRP)=GA2(JGRP,IGRP)
   70       CONTINUE
   72       CONTINUE
   80       CONTINUE
            DO 110 IED=1,NED
            CALL LCMLEN(KPLIB,HVECT(IED),ILENGT,ITYLCM)
            IF(ILENGT.GT.0) THEN
               CALL LCMGET(KPLIB,HVECT(IED),GAS)
               DO 105 IGRP=1,NGRP
               SAGAR(:NBNRS,IRES,IED,IGRP)=GAS(IGRP)
  105          CONTINUE
            ENDIF
  110       CONTINUE
            DO 130 IDEL=1,NDEL
            WRITE(TEXT12,'(6HNUSIGF,I2.2)') IDEL
            CALL LCMLEN(KPLIB,TEXT12,ILENGT,ITYLCM)
            IF(ILENGT.GT.0) THEN
               CALL LCMGET(KPLIB,TEXT12,GAS)
               DO 125 IGRP=1,NGRP
               SDGAR(:NBNRS,IRES,IDEL,IGRP)=GAS(IGRP)
  125          CONTINUE
            ENDIF
  130       CONTINUE
*
            GOLD(IRES,:NGRP)=1.0
            NOR(IRES,:NGRP)=0
            CALL LCMLEN(KPLIB,'NGOLD',ILENGT,ITYLCM)
            IF(ILENGT.GT.0) THEN
              ALLOCATE(GOLD2(NGRP))
              CALL LCMGET(KPLIB,'NGOLD',GOLD2)
              GOLD(IRES,IGRMIN:IGRMAX)=GOLD2(IGRMIN:IGRMAX)
              DEALLOCATE(GOLD2)
            ENDIF
            CALL LCMLEN(KPLIB,'PT-TABLE',ILENGT,ITYLCM)
            IF(ILENGT.EQ.-1) THEN
              CALL LCMSIX(KPLIB,'PT-TABLE',1)
                CALL LCMGET(KPLIB,'NOR',IWRK)
                CALL LCMLEN(KPLIB,'GROUP-RSE',ILENGT,ITYLCM)
                IF(ILENGT.GT.0) THEN
                  LPLIB=LCMGID(KPLIB,'GROUP-RSE')
                  DO IGRP=IGRMIN,IGRMAX
                    MI=NOR(IRES,IGRP)
                    CALL LCMLEL(LPLIB,IGRP,ILENGT,ITYLCM)
                    IF(ILENGT.EQ.0) GOLD(IRES,IGRP)=1.0
                    NOR(IRES,IGRP)=IWRK(IGRP)
                    CALL LCMLEL(LPLIB,IGRP,ILENGT,ITYLCM)
                    IF(GOLD(IRES,IGRP).EQ.-1001.0) THEN
                      MPLIB=LCMGIL(LPLIB,IGRP)
                      CALL LCMGPD(MPLIB,'GAMMA_V',IOFSET)
                      CALL C_F_POINTER(IOFSET,GAMMA_V(IGRP,IRES)%VECTOR,
     1                (/MI/))
                    ENDIF
                  ENDDO
                ENDIF
              CALL LCMSIX(KPLIB,' ',2)
            ENDIF
         ENDIF
      ENDIF
  190 CONTINUE
      CALL KDRCPU(TK2)
      IF(IMPX.GT.1) WRITE(6,'(/34H USSRSE: CPU TIME SPENT TO RECOVER,
     1 23H INFINITE-DILUTION XS =,F8.1,8H SECOND./)') TK2-TK1
*
      CALL KDRCPU(TK1)
      TK4=0.0
      TK5=0.0
      ICPIJ=0
*----
*  COMPUTE THE MERGED VOLUMES AND NUMBER DENSITIES.
*----
      VOLMER(0:NBNRS)=0.0
      DO 210 I=1,NREG
      IBM=MAT(I)
      IF(IBM.GT.0) VOLMER(IREX(IBM))=VOLMER(IREX(IBM))+VOL(I)
  210 CONTINUE
      CONR(:NBNRS,:NIRES)=0.0
      DO 240 ISO=1,NBISO
      JRES=IAPT(ISO)
      IF((JRES.GT.0).AND.(JRES.LE.NIRES)) THEN
         DENN=DEN(ISO)
         DO 230 IREG=1,NREG
         IBM=MAT(IREG)
         IF(MIX(ISO).EQ.IBM) THEN
            IND=IREX(IBM)
            IF(IND.EQ.0) CALL XABORT('USSRSE: IREX FAILURE.')
            CONR(IND,JRES)=CONR(IND,JRES)+DENN*VOL(IREG)/VOLMER(IND)
         ENDIF
  230    CONTINUE
      ENDIF
  240 CONTINUE
*----
*  RECOVER POSITION OF PROBABILITY TABLES AND NAME OF RESONANT ISOTOPE.
*----
      DO 270 IRES=1,NIRES
      ISOT=0
      DO 250 JSOT=1,NBISO
      IF(IAPT(JSOT).EQ.IRES) THEN
         ISOT=JSOT
         GO TO 260
      ENDIF
  250 CONTINUE
      CALL XABORT('USSRSE: UNABLE TO FIND A RESONANT ISOTOPE.')
  260 KPLIB=IPISO1(ISOT) ! set ISOT-th isotope
      CALL LCMLEN(KPLIB,'PT-TABLE',ILONG,ITYLCM)
      IF(ILONG.EQ.0) CALL XABORT('USSRSE: BUG1.')
      CALL LCMSIX(KPLIB,'PT-TABLE',1)
      CALL LCMGET(KPLIB,'NDEL',NDEL0)
      IF(NDEL0.GT.NDEL) CALL XABORT('USSRSE: NDEL OVERFLOW.')
      IPPT1(IRES)=KPLIB
      CALL LCMSIX(KPLIB,' ',2)
      IPPT2(IRES,1)=IREX(MIX(ISOT))
      IPPT2(IRES,2)=ISONAM(1,ISOT)
      IPPT2(IRES,3)=ISONAM(2,ISOT)
      IPPT2(IRES,4)=ISONAM(3,ISOT)
      IPPT2(IRES,5)=NDEL0
      IF(IPPT2(IRES,1).LE.0) CALL XABORT('USSRSE: BUG3.')
  270 CONTINUE
*----
*  DETERMINE WHICH GROUPS ARE SELF-SHIELDED.
*----
      DO 290 IGRP=1,NGRP
      DO 280 IRES=1,NIRES
      MASKG(IGRP,IRES)=((IGRP.GE.IGRMIN).AND.(IGRP.LE.IGRMAX).AND.
     1 (NOR(IRES,IGRP).GT.0))
  280 CONTINUE
  290 CONTINUE
*----
*  INITIALIZATION OF THE MULTIBAND FLUXES AND SOURCES.
*----
      CALL LCMSIX(IPLI0,'SHIBA_SG',1)
      CALL LCMSIX(IPLI0,HCAL,1)
      DO 310 IRES=1,NIRES
      WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
      CALL LCMSIX(IPLI0,CBDPNM,1)
      JPLI0=LCMLID(IPLI0,'NWT0-PT',NGRP)
      DO 300 IGRP=1,NGRP
      IF(MASKG(IGRP,IRES)) THEN
         CALL LCMLEL(JPLI0,IGRP,ILENGT,ITYLCM)
         IF(ILENGT.EQ.0) THEN
            MI=NOR(IRES,IGRP)
            ALLOCATE(XFLUX(NBNRS,MI))
            IF(GOLD(IRES,IGRP).EQ.1.0) THEN
              XFLUX(:NBNRS,:MI)=1.0
            ELSE IF(GOLD(IRES,IGRP).EQ.-1001.0) THEN
              DO IM=1,MI
                XFLUX(:NBNRS,IM)=REAL(GAMMA_V(IGRP,IRES)%VECTOR(IM))
              ENDDO
            ENDIF
            CALL LCMPDL(JPLI0,IGRP,NBNRS*MI,2,XFLUX)
            DEALLOCATE(XFLUX)
         ENDIF
      ENDIF
  300 CONTINUE
      CALL LCMSIX(IPLI0,' ',2)
  310 CONTINUE
*
      DO 340 IRES=1,NIRES
      DO 330 IGRP=1,NGRP
      IF(MASKG(IGRP,IRES)) ICPIJ=ICPIJ+NOR(IRES,IGRP)
  330 CONTINUE
      CALL KDRCPU(TKA)
*----
*  ITERATIVE APPROACH FOR THE HELIOS/WIMS-7 METHOD.
*----
      MAX_R=12
      CALL USSIT1(MAX_R,NGRP,MASKG(1,IRES),IRES,IPLI0,IPTRK,IFTRAK,
     1 CDOOR,IMPX,NBMIX,NREG,NUN,NL,IPHASE,MAXST,MAT,VOL,KEYFLX,LEAKSW,
     2 IREX,SIGGAR,TITR,NIRES,NBNRS,NOR,CONR,GOLD,IPPT1,IPPT2,STGAR,
     3 SSGAR,VOLMER,UNGAR)
*----
*  ITERATIVE APPROACH FOR THE RESONANCE SPECTRUM EXPANSION METHOD.
*----
      CALL USSIT3(MAXNOR,NGRP,MASKG(1,IRES),IRES,IPLI0,IPTRK,IFTRAK,
     1 CDOOR,IMPX,NBMIX,NREG,NUN,IPHASE,MAXST,MAT,VOL,KEYFLX,LEAKSW,
     2 IREX,SIGGAR,TITR,ICORR,NIRES,NBNRS,CONR,GOLD,IPPT1,IPPT2,
     3 VOLMER,UNGAR)
      CALL KDRCPU(TKB)
      TK4=TK4+(TKB-TKA)
  340 CONTINUE
*----
*  COMPUTE THE SELF-SHIELDED REACTION RATES.
*----
      CALL USSIT4(MAXNOR,IPLI0,IPPT1,IPPT2,NGRP,NIRES,NBNRS,NL,NED,
     1 NDEL,PHGAR,STGAR,SFGAR,SSGAR,S0GAR,SAGAR,SDGAR)
      CALL LCMSIX(IPLI0,' ',2)
      CALL LCMSIX(IPLI0,' ',2)
      CALL LCMVAL(IPLI0,' ')
*----
*  RESET MASKG FOR SPH CALCULATION IN SMALL LETHARGY WIDTH GROUPS.
*----
      IF(NIRES.GT.1) THEN
        DO 360 IGRP=1,NGRP
        DO 350 IRES=1,NIRES
        IF(MASKG(IGRP,IRES)) THEN
          MASKG(IGRP,IRES)=.NOT.(GOLD(IRES,IGRP).EQ.-1001.)
          IF(DELTAU(IGRP).GT.0.1) MASKG(IGRP,IRES)=.TRUE.
        ENDIF
  350   CONTINUE
  360   CONTINUE
      ENDIF
      CALL KDRCPU(TK2)
      IF(IMPX.GT.1) WRITE(6,'(/34H USSRSE: CPU TIME SPENT TO COMPUTE,
     1 31H SELF-SHIELDED REACTION RATES =,F8.1,19H SECOND, INCLUDING:
     2 /9X,F8.1,46H SECOND TO BUILD/SOLVE SUBGROUP MATRIX SYSTEM;/9X,
     4 F8.1,38H SECOND TO COMPUTE THE REACTION RATES./9X,9HNUMBER OF,
     5 23H ASSEMBLY DOORS CALLS =,I5,1H.)') TK2-TK1,TK4,TK5,ICPIJ
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(IPISO2,IPISO1)
      DEALLOCATE(GAMMA_V,DELTAU,VOLMER,CONR,GA2,GA1,GAS)
      DEALLOCATE(ISM,IWRK,IPPT2,NOR)
      DEALLOCATE(IPPT1)
      RETURN
      END