summaryrefslogtreecommitdiff
path: root/Dragon/src/USSIT2.f
blob: 8738ee2eabfaeddcb79c80d857b98864b2e9c4e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
*DECK USSIT2
      SUBROUTINE USSIT2(MAXNOR,IPLI0,IGRP,NGRP,ISMIN,ISMAX,NIRES,NBNRS,
     1 NL,NED,NDEL,NOR,IPPT1,IPPT2,GOLD,MAXXS,ISUBG,PHGAR,STGAR,SFGAR,
     2 SSGAR,S0GAR,SAGAR,SDGAR,SWGAR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute self-shielded microscopic cross sections.
*
*Copyright:
* Copyright (C) 2003 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* MAXNOR  maximum order of the probability tables (PT).
* IPLI0   pointer to the internal microscopic cross section library
*         builded by the self-shielding module.
* IGRP    energy group under consideration.
* NGRP    number of energy groups.
* ISMIN   minimum secondary group corresponding to group IGRP.
* ISMAX   maximum secondary group corresponding to group IGRP.
* NIRES   exact number of resonant isotopes.
* NBNRS   number of correlated fuel regions.
* NL      number of Legendre orders required in the calculation
*         (NL=1 or higher).
* NED     number of extra vector edits.
* NDEL    number of delayed neutron precursor groups.
* NOR     exact order of the probability table.
* IPPT1   pointer to LCM directory of each resonant isotope.
* IPPT2   information related to each resonant isotope:
*         IPPT2(:,1) index of a resonant region (used with infinite
*         dilution case);
*         IPPT2(:,2:4) alias name of resonant isotope;
*         IPPT2(:,5) number of delayed neutron groups.
* GOLD    Goldstein-Cohen parameters. Set to -999. to enable the Ribon
*         extended method for a specific isotope.
* MAXXS   number of x-s types.
* ISUBG   type of self-shielding model (=1 use physical probability
*         tables; =4 use Ribon extended method).
*
*Parameters: output
* PHGAR   averaged flux.
* STGAR   averaged microscopic total xs in resonant region.
* SFGAR   averaged nu*microscopic fission xs in resonant region.
* SSGAR   averaged microscopic scattering xs in resonant region.
* S0GAR   averaged microscopic transfer scattering xs in resonant
*         region for primary neutrons in current group.
* SAGAR   averaged microscopic self-shielded additional xs.
* SDGAR   microscopic self-shielded delayed nu-sigf xs.
* SWGAR   averaged microscopic secondary slowing-down cross sections
*         (ISUBG=4).
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPLI0,IPPT1(NIRES)
      INTEGER MAXNOR,NGRP,ISMIN(NL),ISMAX(NL),NIRES,NBNRS,NL,NED,NDEL,
     1 NOR(NIRES),IPPT2(NIRES,5),MAXXS,ISUBG
      REAL GOLD(NIRES),PHGAR(NBNRS,NIRES),STGAR(NBNRS,NIRES),
     1 SFGAR(NBNRS,NIRES),SSGAR(NBNRS,NIRES,NL),
     2 S0GAR(NBNRS,NIRES,NL,NGRP),SAGAR(NBNRS,NIRES,NED),
     3 SDGAR(NBNRS,NIRES,NDEL),SWGAR(NBNRS,NIRES)
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) JPLIB,KPLIB,JPLI0
      LOGICAL EMPTY,LCM
      CHARACTER HSMG*131,TEXT12*12,TEXX12*12,CBDPNM*12
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:,:) :: ISM
      REAL, ALLOCATABLE, DIMENSION(:) :: CGAR
      REAL, ALLOCATABLE, DIMENSION(:,:) :: WEIGH,TOTPT,SIGFPT,SIGWPT,
     1 XFLUX
      REAL, ALLOCATABLE, DIMENSION(:,:,:) :: SIGSPT,SIGAPT,SIGDPT
      REAL, ALLOCATABLE, DIMENSION(:,:,:,:) :: SIG0PT
      TYPE(C_PTR) SIGP_PTR
      REAL, POINTER, DIMENSION(:) :: SIGP
*----
*  SCRATCH STORAGE ALLOCATION
*   ISM     minimum/maximum secondary group indices.
*----
      ALLOCATE(ISM(2,NL))
      ALLOCATE(CGAR(MAXXS),WEIGH(MAXNOR,NIRES),TOTPT(MAXNOR,NIRES),
     1 SIGFPT(MAXNOR,NIRES),SIGSPT(MAXNOR,NIRES,NL),
     2 SIG0PT(MAXNOR,NIRES,NL,NGRP),SIGAPT(MAXNOR,NIRES,NED),
     3 SIGDPT(MAXNOR,NIRES,NDEL),SIGWPT(MAXNOR,NIRES),
     4 XFLUX(NBNRS,MAXNOR))
*----
*  RECOVER THE PROBABILITY TABLE INFORMATION IN CURRENT GROUP.
*----
      DO 110 IRES=1,NIRES
      JPLIB=LCMGID(IPPT1(IRES),'GROUP-PT')
      CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
      IF(ILONG.NE.0) THEN
         KPLIB=LCMGIL(JPLIB,IGRP)
*        RECOVER PROBABILITY TABLE VALUES FROM PT-TABLE DIRECTORY.
         CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
         CALL LCMGET(KPLIB,'ISM-LIMITS',ISM)
         CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
         IF(LENG.EQ.0) THEN
            CALL XABORT('USSIT2: NO PROBABILITY TABLES PRESENT.')
         ELSE
            NPART=LENG/MAXNOR
         ENDIF
         IF(LCM) THEN
            CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
            CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
         ELSE
            ALLOCATE(SIGP(MAXNOR*NPART))
            CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
         ENDIF
         CALL LCMLEN(KPLIB,'SIGQT-SLOW',ILONG,ITYLCM)
         IF(ILONG.GT.0) THEN
            CALL LCMGET(KPLIB,'SIGQT-SIGS',SIGWPT(1,IRES))
         ENDIF
         NDEL0=IPPT2(IRES,5)
         IF(NDEL0.GT.NDEL) CALL XABORT('USSIT2: NDEL OVERFLOW.')
         DO 70 INOR=1,NOR(IRES)
         WEIGH(INOR,IRES)=SIGP(INOR)
         TOTPT(INOR,IRES)=SIGP(MAXNOR+INOR)
         SIGFPT(INOR,IRES)=SIGP(2*MAXNOR+INOR)
         IPP=3
         DO 10 IL=1,NL
         IPP=IPP+1
         SIGSPT(INOR,IRES,IL)=SIGP((IPP-1)*MAXNOR+INOR)
   10    CONTINUE
         DO 35 IL=1,NL
         DO 20 JG=1,NGRP
         SIG0PT(INOR,IRES,IL,JG)=0.0
   20    CONTINUE
         DO 30 JG=ISM(1,IL),ISM(2,IL)
         IPP=IPP+1
         SIG0PT(INOR,IRES,IL,JG)=SIGP((IPP-1)*MAXNOR+INOR)
   30    CONTINUE
   35    CONTINUE
         DO 40 IED=1,NED
         IPP=IPP+1
         SIGAPT(INOR,IRES,IED)=SIGP((IPP-1)*MAXNOR+INOR)
   40    CONTINUE
         DO 50 IDEL=1,NDEL
         SIGDPT(INOR,IRES,IDEL)=0.0
   50    CONTINUE
         DO 60 IDEL=1,NDEL0
         IPP=IPP+1
         SIGDPT(INOR,IRES,IDEL)=SIGP((IPP-1)*MAXNOR+INOR)
   60    CONTINUE
         IF(IPP.NE.NPART) THEN
            WRITE(TEXT12,'(3A4)') (IPPT2(IRES,J0),J0=2,4)
            WRITE(HSMG,'(26HUSSIT2: FAILURE. ISOTOPE='',A12,7H'' (IPP=,
     1      I6,7H NPART=,I6,6H IGRP=,I6,2H).)') TEXT12,IPP,NPART,IGRP
            CALL XABORT(HSMG)
         ENDIF
   70    CONTINUE
         IF(.NOT.LCM) DEALLOCATE(SIGP)
      ELSE
*        USE INFINITE DILUTION VALUES.
         IND=IPPT2(IRES,1)
         XFLUX(:NBNRS,1)=1.0
         WEIGH(1,IRES)=1.0
         TOTPT(1,IRES)=STGAR(IND,IRES)
         SIGFPT(1,IRES)=SFGAR(IND,IRES)
         SIGWPT(1,IRES)=SWGAR(IND,IRES)
         DO 80 IED=1,NED
         SIGAPT(1,IRES,IED)=SAGAR(IND,IRES,IED)
   80    CONTINUE
         DO 90 IDEL=1,NDEL
         SIGDPT(1,IRES,IDEL)=SDGAR(IND,IRES,IDEL)
   90    CONTINUE
         DO 105 IL=1,NL
         SIGSPT(1,IRES,IL)=SSGAR(IND,IRES,IL)
         DO 100 JG=1,NGRP
         SIG0PT(1,IRES,IL,JG)=S0GAR(IND,IRES,IL,JG)
  100    CONTINUE
  105    CONTINUE
      ENDIF
  110 CONTINUE
*----
*  COMPUTE THE SELF-SHIELDED CROSS SECTIONS IN CURRENT GROUP.
*----
      DO 230 K=1,NIRES
      IF(NOR(K).EQ.1) GO TO 230
      WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') K,NIRES
      NDEL0=IPPT2(K,5)
      CALL LCMSIX(IPLI0,CBDPNM,1)
      JPLI0=LCMGID(IPLI0,'NWT0-PT')
      CALL LCMGDL(JPLI0,IGRP,XFLUX)
      CALL LCMSIX(IPLI0,' ',2)
      DO 220 I=1,NBNRS
      PHGAR(I,K)=0.0
      DO 120 IOF=1,MAXXS
      CGAR(IOF)=0.0
  120 CONTINUE
      DO 170 KINOR=1,NOR(K)
      WW=XFLUX(I,KINOR)*WEIGH(KINOR,K)
      PHGAR(I,K)=PHGAR(I,K)+WW
      CGAR(1)=CGAR(1)+TOTPT(KINOR,K)*WW
      CGAR(2)=CGAR(2)+SIGFPT(KINOR,K)*WW
      IOF=2
      JOF=0
      DO 140 IL=1,NL
      IOF=IOF+1
      IF((ISUBG.EQ.4).AND.(GOLD(K).EQ.-999.)) THEN
         WW=XFLUX(I,KINOR)*WEIGH(KINOR,K)
      ENDIF
      CGAR(IOF)=CGAR(IOF)+SIGSPT(KINOR,K,IL)*WW
      JOF=IOF
      DO 130 JGRP=ISMIN(IL),ISMAX(IL)
      JOF=JOF+1
      CGAR(JOF)=CGAR(JOF)+SIG0PT(KINOR,K,IL,JGRP)*WW
  130 CONTINUE
      IOF=JOF
  140 CONTINUE
      IOF=JOF
      DO 150 IED=1,NED
      IOF=IOF+1
      CGAR(IOF)=CGAR(IOF)+SIGAPT(KINOR,K,IED)*WW
  150 CONTINUE
      DO 160 IDEL=1,NDEL0
      IOF=IOF+1
      CGAR(IOF)=CGAR(IOF)+SIGDPT(KINOR,K,IDEL)*WW
  160 CONTINUE
      IOF=IOF+NDEL-NDEL0
      IF((ISUBG.EQ.4).AND.(GOLD(K).EQ.-999.)) THEN
         IOF=IOF+1
         CGAR(IOF)=CGAR(IOF)+SIGWPT(KINOR,K)*WW
      ELSE IF(ISUBG.EQ.4) THEN
         IOF=IOF+1
         CGAR(IOF)=CGAR(IOF)+SIGSPT(KINOR,K,1)*WW
      ENDIF
      IF(IOF.NE.MAXXS) CALL XABORT('USSIT2: BAD NB OF X-S TYPES.')
  170 CONTINUE
*
      STGAR(I,K)=CGAR(1)/PHGAR(I,K)
      SFGAR(I,K)=CGAR(2)/PHGAR(I,K)
      IOF=2
      DO 195 IL=1,NL
      IOF=IOF+1
      SSGAR(I,K,IL)=CGAR(IOF)/PHGAR(I,K)
      DO 180 JGRP=1,NGRP
      S0GAR(I,K,IL,JGRP)=0.0
  180 CONTINUE
      DO 190 JGRP=ISMIN(IL),ISMAX(IL)
      IOF=IOF+1
      S0GAR(I,K,IL,JGRP)=CGAR(IOF)/PHGAR(I,K)
  190 CONTINUE
  195 CONTINUE
      DO 200 IED=1,NED
      IOF=IOF+1
      SAGAR(I,K,IED)=CGAR(IOF)/PHGAR(I,K)
  200 CONTINUE
      DO 210 IDEL=1,NDEL0
      IOF=IOF+1
      SDGAR(I,K,IDEL)=CGAR(IOF)/PHGAR(I,K)
  210 CONTINUE
      IOF=IOF+NDEL-NDEL0
      IF(ISUBG.EQ.4) SWGAR(I,K)=CGAR(IOF+1)/PHGAR(I,K)
  220 CONTINUE
  230 CONTINUE
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(XFLUX,SIGWPT,SIGDPT,SIGAPT,SIG0PT,SIGSPT,SIGFPT,TOTPT,
     1 WEIGH,CGAR)
      DEALLOCATE(ISM)
      RETURN
      END