1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
|
*DECK USSIT1
SUBROUTINE USSIT1(MAXNOR,NGRP,MASKG,IRES,IPLI0,IPTRK,IFTRAK,
1 CDOOR,IMPX,NBMIX,NREG,NUN,NL,IPHASE,MAXST,MAT,VOL,KEYFLX,LEAKSW,
2 IREX,SIGGAR,TITR,NIRES,NBNRS,NOR,CONR,GOLD,IPPT1,IPPT2,STGAR,
3 SSGAR,VOLMER,UNGAR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the multiband fluxes as required by the subgroup method using
* an iterative approach:
* a) assume a single resonant isotope;
* b) use the standard solution doors of Dragon.
*
*Copyright:
* Copyright (C) 2003 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* MAXNOR maximum order of the probability tables (PT).
* NGRP number of energy group.
* MASKG energy group mask pointing on self-shielded groups.
* IRES index of the resonant isotope.
* IPLI0 pointer to the internal microscopic cross section library
* builded by the self-shielding module.
* IPTRK pointer to the tracking (L_TRACK signature).
* IFTRAK file unit number used to store the tracks.
* CDOOR name of the geometry/solution operator.
* IMPX print flag (equal to zero for no print).
* NBMIX number of mixtures in the internal library.
* NREG number of regions.
* NUN number of unknowns in the flux or source vector in one
* energy group and one band.
* NL number of Legendre orders required in the calculation
* (NL=1 or higher).
* IPHASE type of flux solution (=1 use a native flux solution door;
* =2 use collision probabilities).
* MAXST maximum number of fixed point iterations for the ST scattering
* source.
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* KEYFLX pointers of fluxes in unknown vector.
* LEAKSW leakage switch (LEAKSW=.TRUE. if neutron leakage through
* external boundary is present).
* IREX fuel region index assigned to each mixture. Equal to zero
* in non-resonant mixtures or in mixtures not used.
* SIGGAR macroscopic x-s of the non-resonant isotopes in each mixture.
* (*,*,*,1) total; (*,*,*,2) transport correction;
* (*,*,*,3) P0 scattering; (*,*,*,4) flux times P0 scattering.
* TITR title.
* NIRES exact number of correlated resonant isotopes.
* NBNRS number of correlated fuel regions.
* NOR exact order of the probability table.
* CONR number density of the resonant isotopes.
* GOLD Goldstein-Cohen parameter (.ge.0.0).
* IPPT1 pointer to LCM directory of each resonant isotope.
* IPPT2 information related to each resonant isotope:
* IPPT2(:,1) index of a resonant region (used with infinite
* dilution case);
* IPPT2(:,2:4) alias name of resonant isotope.
* STGAR averaged microscopic total xs in resonant region.
* SSGAR averaged microscopic scattering xs in resonant region.
* VOLMER volumes of the resonant regions.
*
*Parameters: output
* UNGAR averaged flux unknowns.
*
*-----------------------------------------------------------------------
*
USE GANLIB
USE DOORS_MOD
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPLI0,IPTRK,IPPT1(NIRES)
INTEGER MAXNOR,NGRP,IRES,IFTRAK,IMPX,NBMIX,NREG,NUN,NL,
1 IPHASE,MAXST,MAT(NREG),KEYFLX(NREG),IREX(NBMIX),NIRES,NBNRS,
2 NOR(NIRES,NGRP),IPPT2(NIRES,4)
REAL VOL(NREG),SIGGAR(NBMIX,0:NIRES,NGRP,4),
1 CONR(NBNRS,NIRES),GOLD(NIRES,NGRP),STGAR(NBNRS,NIRES,NGRP),
2 SSGAR(NBNRS,NIRES,NL,NGRP),VOLMER(0:NBNRS),
3 UNGAR(NUN,NIRES,NGRP)
CHARACTER CDOOR*12,TITR*72
LOGICAL LEAKSW,MASKG(NGRP)
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) JPLIB,KPLIB,JPLI0,KPSYS,IPSYS,IPMACR,IPSOU
CHARACTER CBDPNM*12,TEXT12*12,TEXX12*12,HSMG*131
LOGICAL EMPTY,LCM,LEXAC,REBFLG
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: NPSYS
REAL, ALLOCATABLE, DIMENSION(:) :: SIGTXS,SIGS0X,SIGG,FLNEW,FUN,
1 SUN
REAL, ALLOCATABLE, DIMENSION(:,:) :: WEIGH,TOTPT,SIGWS
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: XFLUX
TYPE(C_PTR) SIGP_PTR
REAL, POINTER, DIMENSION(:) :: SIGP
*----
* FIND THE NUMBER OF COMPONENTS REQUIRED AND ALLOCATE THE LIST OF
* ASSEMBLY MATRICES.
*----
NASM=0
DO 10 IGRP=1,NGRP
IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).GT.-900.)) THEN
NASM=NASM+NOR(IRES,IGRP)
ENDIF
10 CONTINUE
IF(NASM.EQ.0) RETURN
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(NPSYS(MAXNOR*NGRP))
ALLOCATE(XFLUX(NBNRS,MAXNOR,NIRES),SIGTXS(0:NBMIX),
1 SIGS0X(0:NBMIX),SIGG(0:NBMIX),WEIGH(MAXNOR,NIRES),
2 TOTPT(MAXNOR,NIRES),SIGWS(MAXNOR,NIRES),FLNEW(NBNRS))
*----
* CREATE A SPECIFIC DIRECTORY FOR IRES-TH RESONANT ISOTOPE.
*----
WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
CALL LCMSIX(IPLI0,CBDPNM,1)
JPLI0=LCMGID(IPLI0,'NWT0-PT')
CALL LCMLEN(IPLI0,'ASSEMB-PHYS',ILONG,ITYLCM)
IPSYS=LCMLID(IPLI0,'ASSEMB-PHYS',MAX(ILONG,NASM))
CALL LCMSIX(IPLI0,' ',2)
*----
* LOOP OVER THE ENERGY GROUPS.
*----
IASM=0
DO 100 IGRP=1,NGRP
IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).GT.-900.)) THEN
IF(IMPX.GT.2) THEN
WRITE(TEXT12,'(3A4)') (IPPT2(IRES,J0),J0=2,4)
WRITE(6,'(36H USSIT1: PROCESS CORRELATED ISOTOPE ,A12,
1 11H WITH INDEX,I3,9H IN GROUP,I4,20H (ITERATIVE METHOD).)')
2 TEXT12,IRES,IGRP
ENDIF
DO 20 JRES=1,NIRES
IF(GOLD(JRES,IGRP).EQ.-998.) THEN
WRITE(HSMG,'(28HUSSIT1: PT SET FOR ISOTOPE '',3A4,
1 10H'' IN GROUP,I4,1H.)') (IPPT2(JRES,J0),J0=2,4),IGRP
CALL XABORT(HSMG)
ELSE IF(GOLD(JRES,IGRP).EQ.-999.) THEN
WRITE(HSMG,'(30HUSSIT1: PTSL SET FOR ISOTOPE '',3A4,
1 10H'' IN GROUP,I4,1H.)') (IPPT2(JRES,J0),J0=2,4),IGRP
CALL XABORT(HSMG)
ELSE IF(GOLD(JRES,IGRP).EQ.-1000.) THEN
WRITE(HSMG,'(30HUSSIT1: PTMC SET FOR ISOTOPE '',3A4,
1 10H'' IN GROUP,I4,1H.)') (IPPT2(JRES,J0),J0=2,4),IGRP
CALL XABORT(HSMG)
ELSE IF(NOR(JRES,IGRP).GT.MAXNOR) THEN
CALL XABORT('USSIT1: MAXNOR OVERFLOW.')
ENDIF
20 CONTINUE
NORI=NOR(IRES,IGRP)
*----
* COLLECT THE BASE POINTS IN TOTAL AND PARTIAL CROSS SECTION.
*----
DO 40 JRES=1,NIRES
JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
IF(ILONG.NE.0) THEN
KPLIB=LCMGIL(JPLIB,IGRP)
CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
NPART=LENG/MAXNOR
IF(LCM) THEN
CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
ELSE
ALLOCATE(SIGP(MAXNOR*NPART))
CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
ENDIF
DO 30 INOR=1,NOR(JRES,IGRP)
WEIGH(INOR,JRES)=SIGP(INOR)
TOTPT(INOR,JRES)=SIGP(MAXNOR+INOR)
SIGWS(INOR,JRES)=SIGP(3*MAXNOR+INOR)
30 CONTINUE
IF(.NOT.LCM) DEALLOCATE(SIGP)
ELSE
WEIGH(1,JRES)=1.0
TOTPT(1,JRES)=STGAR(IPPT2(JRES,1),JRES,IGRP)
SIGWS(1,JRES)=SSGAR(IPPT2(JRES,1),JRES,1,IGRP)
ENDIF
40 CONTINUE
*----
* SET THE MIXTURE-DEPENDENT CROSS SECTIONS.
*----
DO 90 INOR=1,NORI
SIGTXS(0:NBMIX)=0.0
SIGS0X(0:NBMIX)=0.0
DO 80 IBM=1,NBMIX
IND=IREX(IBM)
DO 70 JRES=0,NIRES
IF(JRES.EQ.0) THEN
SIGTXS(IBM)=SIGTXS(IBM)+(SIGGAR(IBM,0,IGRP,1)-
1 SIGGAR(IBM,0,IGRP,2))
SIGS0X(IBM)=SIGS0X(IBM)-SIGGAR(IBM,0,IGRP,2)
ELSE IF((JRES.NE.IRES).AND.(IND.GT.0)) THEN
IF((IPPT2(IRES,2).EQ.IPPT2(JRES,2)).AND.
1 (IPPT2(IRES,3).EQ.IPPT2(JRES,3))) THEN
* FULL CORRELATION APPROXIMATION SIMILAR TO THE TECHNIQUE
* USED IN ECCO.
SIGTXS(IBM)=SIGTXS(IBM)+CONR(IND,JRES)*TOTPT(INOR,IRES)
SIGS0X(IBM)=SIGS0X(IBM)+(1.0-GOLD(JRES,IGRP))*
1 CONR(IND,JRES)*SIGWS(INOR,IRES)
ELSE
SIGTXS(IBM)=SIGTXS(IBM)+SIGGAR(IBM,JRES,IGRP,1)
ENDIF
ENDIF
70 CONTINUE
IF(IND.GT.0) THEN
SIGTXS(IBM)=SIGTXS(IBM)+CONR(IND,IRES)*TOTPT(INOR,IRES)
SIGS0X(IBM)=SIGS0X(IBM)+(1.0-GOLD(IRES,IGRP))*CONR(IND,IRES)
1 *SIGWS(INOR,IRES)
ENDIF
80 CONTINUE
IASM=IASM+1
NPSYS(IASM)=IASM
KPSYS=LCMDIL(IPSYS,IASM)
CALL LCMPUT(KPSYS,'DRAGON-TXSC',NBMIX+1,2,SIGTXS)
CALL LCMPUT(KPSYS,'DRAGON-S0XSC',NBMIX+1,2,SIGS0X)
90 CONTINUE
ELSE IF(GOLD(IRES,IGRP).GT.-900.) THEN
CALL LCMLEL(JPLI0,IGRP,LENG0,ITYLCM)
IF(LENG0.NE.0) THEN
WRITE(HSMG,'(42HUSSIT1: UNEXPECTED SELF-SHIELDING DATA FOU,
1 11HND IN GROUP,I5,1H.)') IGRP
CALL XABORT(HSMG)
ENDIF
ENDIF
100 CONTINUE
*----
* ASSEMBLY MATRIX OR REDUCED COLLISION PROBABILITIES CALCULATION.
*----
NANI=1
KNORM=1
NALBP=0
IMPY=MAX(0,IMPX-3)
IF(IPHASE.EQ.1) THEN
* USE A NATIVE DOOR.
ISTRM=1
NW=0
CALL DOORAV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPY,NASM,NREG,
1 NBMIX,NANI,NW,MAT,VOL,KNORM,LEAKSW,TITR,NALBP,ISTRM)
ELSE IF(IPHASE.EQ.2) THEN
* USE A COLLISION PROBABILITY DOOR.
IPIJK=1
ITPIJ=1
CALL DOORPV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPY,NASM,NREG,
1 NBMIX,NANI,MAT,VOL,KNORM,IPIJK,LEAKSW,ITPIJ,.FALSE.,TITR,
2 NALBP)
ENDIF
*----
* LOOP OVER THE ENERGY GROUPS.
*----
IASM=0
DO 260 IGRP=1,NGRP
IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).GT.-900.)) THEN
NORI=NOR(IRES,IGRP)
*----
* COLLECT THE BASE POINTS IN PARTIAL CROSS SECTION.
*----
DO 120 JRES=1,NIRES
JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
IF(ILONG.NE.0) THEN
KPLIB=LCMGIL(JPLIB,IGRP)
CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
NPART=LENG/MAXNOR
IF(LCM) THEN
CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
ELSE
ALLOCATE(SIGP(MAXNOR*NPART))
CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
ENDIF
DO 110 INOR=1,NOR(JRES,IGRP)
WEIGH(INOR,JRES)=SIGP(INOR)
SIGWS(INOR,JRES)=SIGP(3*MAXNOR+INOR)
110 CONTINUE
IF(.NOT.LCM) DEALLOCATE(SIGP)
ELSE
WEIGH(1,JRES)=1.0
SIGWS(1,JRES)=SSGAR(IPPT2(JRES,1),JRES,1,IGRP)
ENDIF
120 CONTINUE
*----
* RECOVER THE PREVIOUS FLUXES.
*----
WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
CALL LCMSIX(IPLI0,CBDPNM,1)
JPLI0=LCMGID(IPLI0,'NWT0-PT')
CALL LCMLEL(JPLI0,IGRP,ILON,ITYLCM)
IF(ILON.GT.NBNRS*MAXNOR) THEN
WRITE(TEXT12,'(3A4)') (IPPT2(IRES,J0),J0=2,4)
WRITE(HSMG,'(34HUSSIT1: FLUX OVERFLOW FOR ISOTOPE ,A12)')
1 TEXT12
CALL XABORT(HSMG)
ENDIF
CALL LCMGDL(JPLI0,IGRP,XFLUX(1,1,IRES))
CALL LCMSIX(IPLI0,' ',2)
*----
* ITERATIVE PROCEDURE.
*----
ITER=0
140 ITER=ITER+1
IF(ITER.GT.MAXST) THEN
WRITE(HSMG,'(35HUSSIT1: TOO MANY ITERATIONS (MAXST=,I4,2H).)')
1 MAXST
CALL XABORT(HSMG)
ENDIF
ERR1=0.0
ERR2=0.0
*----
* COMPUTE THE AVERAGED SOURCE.
*----
ALLOCATE(FUN(NUN*NORI),SUN(NUN*NORI))
SUN(:NUN*NORI)=0.0
DO 195 INOR=1,NORI
KPSYS=LCMGIL(IPSYS,IASM+INOR)
CALL LCMLEN(KPSYS,'FUNKNO$USS',ILENG,ITYLCM)
IF(ILENG.EQ.NUN) THEN
CALL LCMGET(KPSYS,'FUNKNO$USS',FUN((INOR-1)*NUN+1))
ELSE
FUN((INOR-1)*NUN+1:INOR*NUN)=0.0
ENDIF
NPSYS(INOR)=IASM+INOR
SIGG(0)=0.0
DO 170 IBM=1,NBMIX
SIGG(IBM)=SIGGAR(IBM,0,IGRP,3)
IND=IREX(IBM)
DO 150 JRES=1,NIRES
IF((JRES.NE.IRES).AND.(IND.GT.0)) THEN
IF((IPPT2(IRES,2).EQ.IPPT2(JRES,2)).AND.
1 (IPPT2(IRES,3).EQ.IPPT2(JRES,3))) THEN
SIGG(IBM)=SIGG(IBM)+GOLD(JRES,IGRP)*SIGGAR(IBM,JRES,IGRP,4)
ELSE
SIGG(IBM)=SIGG(IBM)+SIGGAR(IBM,JRES,IGRP,4)
ENDIF
ENDIF
150 CONTINUE
IF(IND.GT.0) THEN
DO 160 JNOR=1,NORI
SIGG(IBM)=SIGG(IBM)+GOLD(IRES,IGRP)*WEIGH(JNOR,IRES)*
1 CONR(IND,IRES)*SIGWS(JNOR,IRES)*XFLUX(IND,JNOR,IRES)
160 CONTINUE
ENDIF
170 CONTINUE
IOF=(INOR-1)*NUN
CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
195 CONTINUE
*----
* SOLVE FOR THE MULTIBAND FLUX.
*----
IDIR=0
LEXAC=.FALSE.
IPMACR=C_NULL_PTR
IPSOU=C_NULL_PTR
REBFLG=.FALSE.
CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,NORI,NBMIX,
1 IDIR,NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,
2 IPSOU,REBFLG)
*----
* HOMOGENIZE THE FLUX AT ITERATION ITER.
*----
UNGAR(:NUN,IRES,IGRP)=0.0
DO 235 INOR=1,NORI
KPSYS=LCMGIL(IPSYS,IASM+INOR)
CALL LCMPUT(KPSYS,'FUNKNO$USS',NUN,2,FUN((INOR-1)*NUN+1))
FLNEW(:NBNRS)=0.0
DO 200 I=1,NREG
IF(MAT(I).EQ.0) GO TO 200
IOF=(INOR-1)*NUN+KEYFLX(I)
IND=IREX(MAT(I))
IF(IND.GT.0) FLNEW(IND)=FLNEW(IND)+FUN(IOF)*VOL(I)
200 CONTINUE
DO 210 IND=1,NBNRS
FLNEW(IND)=FLNEW(IND)/VOLMER(IND)
210 CONTINUE
*
DO 220 I=1,NUN
IOF=(INOR-1)*NUN+I
UNGAR(I,IRES,IGRP)=UNGAR(I,IRES,IGRP)+FUN(IOF)*WEIGH(INOR,IRES)
220 CONTINUE
*----
* COMPUTE ERR1 AND ERR2.
*----
DO 230 IND=1,NBNRS
ERR1=MAX(ERR1,ABS(FLNEW(IND)-XFLUX(IND,INOR,IRES)))
ERR2=MAX(ERR2,ABS(FLNEW(IND)))
XFLUX(IND,INOR,IRES)=FLNEW(IND)
230 CONTINUE
235 CONTINUE
DEALLOCATE(SUN,FUN)
*----
* CONVERGENCE CONTROL.
*----
IF(IMPX.GT.2) THEN
WRITE(TEXT12,'(3A4)') (IPPT2(IRES,I),I=2,4)
WRITE(6,'(15H USSIT1: GROUP=,I5,24H. SUBGROUP ITERATION ITE,
1 6HRATION,I4,11H. ISOTOPE='',A12,9H''. ERROR=,1P,E11.4,1H.)')
2 IGRP,ITER,TEXT12,ERR1
ENDIF
IF((ERR1.GT.1.0E-4*ERR2).AND.(GOLD(IRES,IGRP).NE.0.0)) GO TO 140
IF(IMPX.GT.1) THEN
WRITE(TEXT12,'(3A4)') (IPPT2(IRES,I),I=2,4)
WRITE(6,'(15H USSIT1: GROUP=,I5,24H. SUBGROUP ITERATION CON,
1 11HVERGENCE IN,I4,22H ITERATIONS. ISOTOPE='',A12,2H''.)')
2 IGRP,ITER,TEXT12
ENDIF
IF(IMPX.GT.2) THEN
DO 250 IND=1,NBNRS
T1=0.0
DO 240 INOR=1,NORI
T1=T1+WEIGH(INOR,IRES)*XFLUX(IND,INOR,IRES)
240 CONTINUE
WRITE(6,'(31H USSIT1: AVERAGED FLUX IN GROUP,I4,9H AND RESO,
1 11HNANT REGION,I4,21H FOR RESONANT ISOTOPE,I4,2H =,F9.5)')
2 IGRP,IND,IRES,T1
250 CONTINUE
ENDIF
CALL LCMPDL(JPLI0,IGRP,NBNRS*NORI,2,XFLUX(1,1,IRES))
IASM=IASM+NORI
ENDIF
260 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(FLNEW,SIGWS,TOTPT,WEIGH,SIGG,SIGS0X,SIGTXS,XFLUX)
DEALLOCATE(NPSYS)
RETURN
END
|