1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
|
*DECK USSIT0
SUBROUTINE USSIT0(MAXNOR,NGRP,MASKG,IRES,IPLI0,IPTRK,IFTRAK,
1 CDOOR,IMPX,NBMIX,NREG,NUN,NL,IPHASE,MAT,VOL,KEYFLX,LEAKSW,IREX,
2 SIGGAR,TITR,ICORR,NIRES,NBNRS,NOR,CONR,GOLD,IPPT1,IPPT2,STGAR,
3 SSGAR,SWGAR,VOLMER,UNGAR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the multiband fluxes as required by the subgroup method using
* a response matrix approach (Ribon extended subgroup method):
* a) assume a single resonant isotope;
* b) use the standard solution doors of Dragon.
*
*Copyright:
* Copyright (C) 2003 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* MAXNOR maximum order of the probability tables (PT).
* NGRP number of energy group.
* MASKG energy group mask pointing on self-shielded groups.
* IRES index of the resonant isotope.
* IPLI0 pointer to the internal microscopic cross section library
* builded by the self-shielding module.
* IPTRK pointer to the tracking (L_TRACK signature).
* IFTRAK file unit number used to store the tracks.
* CDOOR name of the geometry/solution operator.
* IMPX print flag (equal to zero for no print).
* NBMIX number of mixtures in the internal library.
* NREG number of regions.
* NUN number of unknowns in the flux or source vector in one
* energy group and one band.
* NL number of Legendre orders required in the calculation
* (NL=1 or higher).
* IPHASE type of flux solution (=1 use a native flux solution door;
* =2 use collision probabilities).
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* KEYFLX pointers of fluxes in unknown vector.
* LEAKSW leakage switch (LEAKSW=.TRUE. if neutron leakage through
* external boundary is present).
* IREX fuel region index assigned to each mixture. Equal to zero
* in non-resonant mixtures or in mixtures not used.
* SIGGAR macroscopic x-s of the non-resonant isotopes in each mixture:
* (*,*,*,1) total; (*,*,*,2) transport correction;
* (*,*,*,3) P0 scattering; (*,*,*,4) flux times P0 scattering.
* TITR title.
* ICORR mutual resonance shielding flag (=1 to suppress the model
* in cases it is required in LIB operator).
* NIRES exact number of correlated resonant isotopes.
* NBNRS number of correlated fuel regions.
* NOR exact order of the probability table.
* CONR number density of the resonant isotopes.
* GOLD type of self-shielding model (=1.0 physical probability
* tables; =-999.0 Ribon extended method).
* IPPT1 pointer to LCM directory of each resonant isotope.
* IPPT2 information related to each resonant isotope:
* IPPT2(:,1) index of a resonant region (used with infinite
* dilution case);
* IPPT2(:,2:4) alias name of resonant isotope.
* STGAR averaged microscopic total xs in resonant region.
* SSGAR averaged microscopic scattering xs in resonant region.
* SWGAR microscopic secondary slowing-down cross sections (used
* if GOLD=-999.).
* VOLMER volumes of the resonant and non-resonant regions.
*
*Parameters: output
* UNGAR averaged flux unknowns.
*
*-----------------------------------------------------------------------
*
USE GANLIB
USE DOORS_MOD
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPLI0,IPTRK,IPPT1(NIRES)
INTEGER MAXNOR,NGRP,IRES,IFTRAK,IMPX,NBMIX,NREG,NUN,NL,
1 IPHASE,MAT(NREG),KEYFLX(NREG),IREX(NBMIX),ICORR,NIRES,NBNRS,
2 NOR(NIRES,NGRP),IPPT2(NIRES,4)
REAL VOL(NREG),SIGGAR(NBMIX,0:NIRES,NGRP,4),
1 CONR(NBNRS,NIRES),GOLD(NIRES,NGRP),STGAR(NBNRS,NIRES,NGRP),
2 SSGAR(NBNRS,NIRES,NL,NGRP),SWGAR(NBNRS,NIRES,NGRP),
3 VOLMER(0:NBNRS),UNGAR(NUN,NIRES,NGRP)
LOGICAL LEAKSW,MASKG(NGRP)
CHARACTER CDOOR*12,TITR*72
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) IPSYS,KPSYS,JPLIB,KPLIB,JPLI0,IPMACR,IPSOU
LOGICAL EMPTY,LCM,LEXAC,REBFLG
CHARACTER CBDPNM*12,TEXT12*12,TEXX12*12,HSMG*131
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: NPSYS
REAL, ALLOCATABLE, DIMENSION(:) :: SIGTXS,SIGS0X,SIGG,AWPHI,FUN,
1 SUN
REAL, ALLOCATABLE, DIMENSION(:,:) :: WEIGH,TOTPT,WSLD,SIGWS,PAV,
1 SIGX
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: XFLUX
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: MATRIX
TYPE(C_PTR) SIGP_PTR
REAL, POINTER, DIMENSION(:) :: SIGP
*----
* STATEMENT FUNCTIONS
*----
INM(IND,INOR,NBNRS)=(INOR-1)*NBNRS+IND
*----
* FIND THE NUMBER OF COMPONENTS REQUIRED AND ALLOCATE THE LIST OF
* ASSEMBLY MATRICES.
*----
NASM=0
DO 10 IGRP=1,NGRP
IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
NASM=NASM+NOR(IRES,IGRP)
ENDIF
10 CONTINUE
IF(NASM.EQ.0) RETURN
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(XFLUX(NBNRS,MAXNOR,NIRES),SIGTXS(0:NBMIX),
1 SIGS0X(0:NBMIX),SIGG(0:NBMIX),AWPHI(0:NBNRS),WEIGH(MAXNOR,NIRES),
2 TOTPT(MAXNOR,NIRES),WSLD(MAXNOR**2,NIRES),SIGWS(MAXNOR,NIRES),
3 PAV(0:NBNRS,0:NBNRS),SIGX(NBNRS,NIRES))
ALLOCATE(MATRIX(NBNRS*MAXNOR,NBNRS*MAXNOR+1))
*----
* CREATE A SPECIFIC DIRECTORY FOR IRES-TH RESONANT ISOTOPE.
*----
WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
CALL LCMSIX(IPLI0,CBDPNM,1)
JPLI0=LCMGID(IPLI0,'NWT0-PT')
IPSYS=LCMLID(IPLI0,'ASSEMB-RIBON',NASM)
CALL LCMSIX(IPLI0,' ',2)
*----
* LOOP OVER THE ENERGY GROUPS.
*----
ALLOCATE(NPSYS(NASM))
IASM=0
DO 120 IGRP=1,NGRP
IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
IF(IMPX.GT.1) THEN
WRITE(TEXT12,'(3A4)') (IPPT2(IRES,J0),J0=2,4)
WRITE(6,'(36H USSIT0: PROCESS CORRELATED ISOTOPE ,A12,
1 11H WITH INDEX,I3,9H IN GROUP,I4,22H (RESPONSE MATRIX APPR,
2 6HOACH).)') TEXT12,IRES,IGRP
ENDIF
DO 20 JRES=1,NIRES
IF(GOLD(JRES,IGRP).NE.GOLD(IRES,IGRP)) THEN
WRITE(HSMG,'(34HUSSIT0: PTSL NOT SET FOR ISOTOPE '',3A4,
1 10H'' IN GROUP,I4,1H.)') (IPPT2(JRES,J0),J0=2,4),IGRP
CALL XABORT(HSMG)
ELSE IF(NOR(JRES,IGRP).GT.MAXNOR) THEN
CALL XABORT('USSIT0: MAXNOR OVERFLOW.')
ENDIF
20 CONTINUE
*----
* COLLECT THE BASE POINTS IN TOTAL CROSS SECTION.
*----
NORI=NOR(IRES,IGRP)
DO 40 JRES=1,NIRES
JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
IF(ILONG.NE.0) THEN
KPLIB=LCMGIL(JPLIB,IGRP)
CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
NPART=LENG/MAXNOR
IF(LCM) THEN
CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
ELSE
ALLOCATE(SIGP(MAXNOR*NPART))
CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
ENDIF
DO 30 INOR=1,NOR(JRES,IGRP)
WEIGH(INOR,JRES)=SIGP(INOR)
TOTPT(INOR,JRES)=SIGP(MAXNOR+INOR)
30 CONTINUE
IF(.NOT.LCM) DEALLOCATE(SIGP)
ELSE
WEIGH(1,JRES)=1.0
TOTPT(1,JRES)=STGAR(IPPT2(JRES,1),JRES,IGRP)
ENDIF
40 CONTINUE
*----
* SET THE MIXTURE-DEPENDENT CROSS SECTIONS.
*----
DO 110 INOR=1,NORI
SIGTXS(0:NBMIX)=0.0
SIGS0X(0:NBMIX)=0.0
DO 90 IBM=1,NBMIX
IND=IREX(IBM)
DO 80 JRES=0,NIRES
IF(JRES.EQ.0) THEN
SIGTXS(IBM)=SIGTXS(IBM)+(SIGGAR(IBM,0,IGRP,1)-
1 SIGGAR(IBM,0,IGRP,2))
SIGS0X(IBM)=SIGS0X(IBM)-SIGGAR(IBM,0,IGRP,2)
ELSE IF((JRES.NE.IRES).AND.(IND.GT.0)) THEN
SIGTXS(IBM)=SIGTXS(IBM)+SIGGAR(IBM,JRES,IGRP,1)
ENDIF
80 CONTINUE
IF(IND.GT.0) THEN
SIGTXS(IBM)=SIGTXS(IBM)+CONR(IND,IRES)*TOTPT(INOR,IRES)
ENDIF
90 CONTINUE
IASM=IASM+1
NPSYS(IASM)=IASM
KPSYS=LCMDIL(IPSYS,IASM)
CALL LCMPUT(KPSYS,'DRAGON-TXSC',NBMIX+1,2,SIGTXS)
CALL LCMPUT(KPSYS,'DRAGON-S0XSC',NBMIX+1,2,SIGS0X)
110 CONTINUE
ELSE IF(GOLD(IRES,IGRP).EQ.-999.) THEN
CALL LCMLEL(JPLI0,IGRP,LENG0,ITYLCM)
IF(LENG0.NE.0) THEN
WRITE(HSMG,'(42HUSSIT0: UNEXPECTED SELF-SHIELDING DATA FOU,
1 11HND IN GROUP,I5,1H.)') IGRP
CALL XABORT(HSMG)
ENDIF
ENDIF
120 CONTINUE
*----
* ASSEMBLY MATRIX OR REDUCED COLLISION PROBABILITIES CALCULATION.
*----
NANI=1
KNORM=1
NALBP=0
IMPY=MAX(0,IMPX-3)
IF(IPHASE.EQ.1) THEN
* USE A NATIVE DOOR.
ISTRM=1
NW=0
CALL DOORAV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPY,NASM,NREG,
1 NBMIX,NANI,NW,MAT,VOL,KNORM,LEAKSW,TITR,NALBP,ISTRM)
ELSE IF(IPHASE.EQ.2) THEN
* USE A COLLISION PROBABILITY DOOR.
IPIJK=1
ITPIJ=1
CALL DOORPV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPY,NASM,NREG,
1 NBMIX,NANI,MAT,VOL,KNORM,IPIJK,LEAKSW,ITPIJ,.FALSE.,TITR,NALBP)
ENDIF
DEALLOCATE(NPSYS)
*----
* LOOP OVER THE ENERGY GROUPS.
*----
IASM=0
DO 300 IGRP=1,NGRP
IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
IF(IMPX.GT.5) WRITE(6,'(/25H USSIT0: PROCESSING GROUP,I5,
> 6H WITH ,A,1H.)') IGRP,CDOOR
NORI=NOR(IRES,IGRP)
*----
* COMPUTE THE AVERAGED COLLISION PROBABILITY MATRIX.
*----
ALLOCATE(NPSYS(NORI*(NBNRS+1)))
ALLOCATE(FUN(NUN*NORI*(NBNRS+1)),SUN(NUN*NORI*(NBNRS+1)))
FUN(:NUN*NORI*(NBNRS+1))=0.0
SUN(:NUN*NORI*(NBNRS+1))=0.0
DO 145 INOR=1,NORI
DO 140 JNBN=0,NBNRS
NPSYS((INOR-1)*(NBNRS+1)+JNBN+1)=IASM+INOR
T1=0.0
DO 125 I=1,NREG
IBM=MAT(I)
IF(IBM.EQ.0) GO TO 125
IND=IREX(IBM)
IF((JNBN.EQ.0).AND.(IND.EQ.0)) THEN
T1=T1+SIGGAR(IBM,0,IGRP,3)*VOL(I)
ELSE IF(IND.EQ.JNBN) THEN
T1=T1+VOL(I)
ENDIF
125 CONTINUE
IOF=(INOR-1)*NUN*(NBNRS+1)+JNBN*NUN
SIGG(0:NBMIX)=0.0
DO 130 IBM=1,NBMIX
IND=IREX(IBM)
IF((JNBN.EQ.0).AND.(IND.EQ.0)) THEN
SIGG(IBM)=SIGG(IBM)+SIGGAR(IBM,0,IGRP,3)
ELSE IF(IND.EQ.JNBN) THEN
SIGG(IBM)=SIGG(IBM)+1.0
ENDIF
130 CONTINUE
CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
DO 135 I=1,NUN
IF(T1.NE.0.0) SUN(IOF+I)=SUN(IOF+I)/T1
135 CONTINUE
140 CONTINUE
145 CONTINUE
*----
* SOLVE FOR THE MULTIBAND FLUX.
*----
IDIR=0
NABS=NORI*(NBNRS+1)
LEXAC=.FALSE.
IPMACR=C_NULL_PTR
IPSOU=C_NULL_PTR
REBFLG=.FALSE.
CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,NABS,NBMIX,
1 IDIR,NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,
2 IPSOU,REBFLG)
*----
* HOMOGENIZE THE MULTIBAND FLUX.
*----
DO 170 INOR=1,NORI
PAV(0:NBNRS,0:NBNRS)=0.0
DO 155 JNBN=0,NBNRS
T1=0.0
DO 150 I=1,NREG
IBM=MAT(I)
IF(IBM.EQ.0) GO TO 150
IOF=(INOR-1)*NUN*(NBNRS+1)+JNBN*NUN+KEYFLX(I)
PAV(IREX(IBM),JNBN)=PAV(IREX(IBM),JNBN)+FUN(IOF)*VOL(I)
150 CONTINUE
155 CONTINUE
DO 165 I=0,NBNRS
DO 160 J=0,NBNRS
IF(VOLMER(I).NE.0.0) PAV(I,J)=PAV(I,J)*VOLMER(J)/VOLMER(I)
160 CONTINUE
165 CONTINUE
KPSYS=LCMGIL(IPSYS,IASM+INOR)
CALL LCMPUT(KPSYS,'DRAGON-PAV',(NBNRS+1)**2,2,PAV(0,0))
170 CONTINUE
DEALLOCATE(SUN,FUN,NPSYS)
*----
* COLLECT THE BASE POINTS IN TOTAL AND PARTIAL CROSS SECTION.
*----
DO 200 JRES=1,NIRES
JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
IF(ILONG.NE.0) THEN
KPLIB=LCMGIL(JPLIB,IGRP)
CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
NPART=LENG/MAXNOR
IF(LCM) THEN
CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
ELSE
ALLOCATE(SIGP(MAXNOR*NPART))
CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
ENDIF
IF(GOLD(IRES,IGRP).EQ.-999.) THEN
DO 180 INOR=1,NOR(JRES,IGRP)
WEIGH(INOR,JRES)=SIGP(INOR)
TOTPT(INOR,JRES)=SIGP(MAXNOR+INOR)
180 CONTINUE
CALL LCMGET(KPLIB,'SIGQT-SLOW',WSLD(1,JRES))
CALL LCMGET(KPLIB,'SIGQT-SIGS',SIGWS(1,JRES))
ELSE
DO 190 INOR=1,NOR(JRES,IGRP)
WEIGH(INOR,JRES)=SIGP(INOR)
TOTPT(INOR,JRES)=SIGP(MAXNOR+INOR)
SIGWS(INOR,JRES)=SIGP(3*MAXNOR+INOR)
190 CONTINUE
ENDIF
IF(.NOT.LCM) DEALLOCATE(SIGP)
ELSE
WEIGH(1,JRES)=1.0
TOTPT(1,JRES)=STGAR(IPPT2(JRES,1),JRES,IGRP)
IF(GOLD(IRES,IGRP).EQ.-999.) THEN
SIGWS(1,JRES)=SWGAR(IPPT2(JRES,1),JRES,IGRP)
WSLD(1,JRES)=1.0
ELSE
SIGWS(1,JRES)=SSGAR(IPPT2(JRES,1),JRES,1,IGRP)
ENDIF
ENDIF
200 CONTINUE
*----
* TAKE INTO ACCOUNT CORRELATION EFFECTS BETWEEN ISOTOPES USING THE
* MUTUAL SELF-SHIELDING MODEL.
*----
IF((NIRES.GT.1).AND.(GOLD(IRES,IGRP).EQ.-999.).AND.
1 (ICORR.EQ.0)) THEN
DO 225 JRES=1,NIRES
DO 220 IND=1,NBNRS
SIGX(IND,JRES)=0.0
T1=0.0
T2=0.0
DO 215 I=1,NREG
IBM=MAT(I)
IF(IBM.EQ.0) GO TO 215
IF(IND.EQ.IREX(IBM)) THEN
T1=T1+(SIGGAR(IBM,JRES,IGRP,1)-SIGGAR(IBM,JRES,IGRP,2))*
1 VOL(I)
T2=T2+VOL(I)
ENDIF
215 CONTINUE
IF(T2.NE.0.0) SIGX(IND,JRES)=T1/T2
220 CONTINUE
225 CONTINUE
CALL USSCOR(MAXNOR,IGRP,IPSYS,IASM,IRES,NBNRS,NIRES,
1 NOR(1,IGRP),CONR,IPPT1,IPPT2,WEIGH,TOTPT,SIGX,VOLMER)
ENDIF
*----
* RESPONSE MATRIX APPROACH. LOOP OVER THE SECONDARY SUBGROUPS.
*----
DO 272 INOR=1,NORI
KPSYS=LCMGIL(IPSYS,IASM+INOR)
CALL LCMGET(KPSYS,'DRAGON-PAV',PAV(0,0))
*----
* LOOP OVER THE PRIMARY SUBGROUPS. NORI+1 IS THE SOURCE.
*----
DO 271 JNOR=1,NORI+1
IF(JNOR.LE.NORI) THEN
JNBMAX=NBNRS
ELSE
JNBMAX=1
ENDIF
DO 270 JNBN=1,JNBMAX
AWPHI(1:NBNRS)=0.0
DO 250 I=1,NREG
IBM=MAT(I)
IF(IBM.EQ.0) GO TO 250
JND=IREX(IBM)
QQQ=0.0
IF(JNOR.EQ.NORI+1) THEN
DO 230 JRES=0,NIRES
IF(JRES.EQ.0) THEN
QQQ=QQQ+SIGGAR(IBM,0,IGRP,3)
ELSE IF((JRES.NE.IRES).AND.(JND.GT.0)) THEN
QQQ=QQQ+SIGGAR(IBM,JRES,IGRP,4)
ENDIF
230 CONTINUE
ELSE IF(JND.EQ.JNBN) THEN
IF(GOLD(IRES,IGRP).EQ.-999.) THEN
WWW=WSLD((JNOR-1)*NORI+INOR,IRES)/WEIGH(INOR,IRES)
ELSE
WWW=WEIGH(JNOR,IRES)
ENDIF
QQQ=QQQ-WWW*CONR(JND,IRES)*SIGWS(JNOR,IRES)
ENDIF
DO 240 IND=1,NBNRS
AWPHI(IND)=AWPHI(IND)+PAV(IND,JND)*QQQ*VOL(I)/VOLMER(JND)
240 CONTINUE
250 CONTINUE
DO 260 IND=1,NBNRS
MATRIX(INM(IND,INOR,NBNRS),INM(JNBN,JNOR,NBNRS))=AWPHI(IND)
260 CONTINUE
270 CONTINUE
271 CONTINUE
272 CONTINUE
*
DO 280 I=1,NBNRS*NORI
MATRIX(I,I)=MATRIX(I,I)+1.0D0
280 CONTINUE
CALL ALSBD(NBNRS*NORI,1,MATRIX,IER,NBNRS*MAXNOR)
IF(IER.NE.0) CALL XABORT('USSIT0: SINGULAR MATRIX.')
XFLUX(:NBNRS,:MAXNOR,IRES)=0.0
DO 295 IND=1,NBNRS
DO 290 INOR=1,NORI
I1=INM(IND,INOR,NBNRS)
XFLUX(IND,INOR,IRES)=REAL(MATRIX(I1,NBNRS*NORI+1))
290 CONTINUE
295 CONTINUE
* END OF RESPONSE MATRIX APPROACH.
*
CALL LCMPDL(JPLI0,IGRP,NBNRS*NORI,2,XFLUX(1,1,IRES))
IASM=IASM+NORI
ENDIF
300 CONTINUE
*----
* COMPUTE UNGAR, THE REGION-ORDERED FLUX.
*----
ALLOCATE(NPSYS(NASM),FUN(NUN*NASM),SUN(NUN*NASM))
SUN(:NUN*NASM)=0.0
IASM=0
DO 420 IGRP=1,NGRP
IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
NORI=NOR(IRES,IGRP)
*----
* RECOVER THE PREVIOUS FLUXES.
*----
WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
CALL LCMSIX(IPLI0,CBDPNM,1)
JPLI0=LCMGID(IPLI0,'NWT0-PT')
CALL LCMLEL(JPLI0,IGRP,ILON,ITYLCM)
IF(ILON.GT.NBNRS*MAXNOR) THEN
WRITE(TEXT12,'(3A4)') (IPPT2(IRES,J0),J0=2,4)
WRITE(HSMG,'(34HUSSIT0: FLUX OVERFLOW FOR ISOTOPE ,A12)')
1 TEXT12
CALL XABORT(HSMG)
ENDIF
CALL LCMGDL(JPLI0,IGRP,XFLUX(1,1,IRES))
CALL LCMSIX(IPLI0,' ',2)
*----
* COLLECT THE BASE POINTS IN PARTIAL CROSS SECTION.
*----
DO 340 JRES=1,NIRES
JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
IF(ILONG.NE.0) THEN
KPLIB=LCMGIL(JPLIB,IGRP)
CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
NPART=LENG/MAXNOR
IF(LCM) THEN
CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
ELSE
ALLOCATE(SIGP(MAXNOR*NPART))
CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
ENDIF
IF(GOLD(IRES,IGRP).EQ.-999.) THEN
DO 320 INOR=1,NOR(JRES,IGRP)
WEIGH(INOR,JRES)=SIGP(INOR)
320 CONTINUE
CALL LCMGET(KPLIB,'SIGQT-SLOW',WSLD(1,JRES))
CALL LCMGET(KPLIB,'SIGQT-SIGS',SIGWS(1,JRES))
ELSE
DO 330 INOR=1,NOR(JRES,IGRP)
WEIGH(INOR,JRES)=SIGP(INOR)
SIGWS(INOR,JRES)=SIGP(3*MAXNOR+INOR)
330 CONTINUE
ENDIF
IF(.NOT.LCM) DEALLOCATE(SIGP)
ELSE
WEIGH(1,JRES)=1.0
IF(GOLD(IRES,IGRP).EQ.-999.) THEN
SIGWS(1,JRES)=SWGAR(IPPT2(JRES,1),JRES,IGRP)
WSLD(1,JRES)=1.0
ELSE
SIGWS(1,JRES)=SSGAR(IPPT2(JRES,1),JRES,1,IGRP)
ENDIF
ENDIF
340 CONTINUE
*----
* COMPUTE THE AVERAGED SOURCE.
*----
DO 380 INOR=1,NORI
NPSYS(IASM+INOR)=IASM+INOR
KPSYS=LCMGIL(IPSYS,IASM+INOR)
CALL LCMLEN(KPSYS,'FUNKNO$USS',ILENG,ITYLCM)
IF(ILENG.EQ.NUN) THEN
CALL LCMGET(KPSYS,'FUNKNO$USS',FUN((IASM+INOR-1)*NUN+1))
ELSE
FUN((IASM+INOR-1)*NUN+1:(IASM+INOR)*NUN)=0.0
ENDIF
SIGG(0)=0.0
DO 370 IBM=1,NBMIX
QQQ=SIGGAR(IBM,0,IGRP,3)
IND=IREX(IBM)
DO 350 JRES=1,NIRES
IF((JRES.NE.IRES).AND.(IND.GT.0)) THEN
QQQ=QQQ+SIGGAR(IBM,JRES,IGRP,4)
ENDIF
350 CONTINUE
IF(IND.GT.0) THEN
DO 360 JNOR=1,NORI
IF(GOLD(IRES,IGRP).EQ.-999.) THEN
WWW=WSLD((JNOR-1)*NORI+INOR,IRES)/WEIGH(INOR,IRES)
ELSE
WWW=WEIGH(JNOR,IRES)
ENDIF
QQQ=QQQ+WWW*CONR(IND,IRES)*SIGWS(JNOR,IRES)*
1 XFLUX(IND,JNOR,IRES)
360 CONTINUE
ENDIF
SIGG(IBM)=QQQ*WEIGH(INOR,IRES)
370 CONTINUE
IOF=(IASM+INOR-1)*NUN
CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
380 CONTINUE
*
IF(IMPX.GT.0) THEN
WRITE(TEXT12,'(3A4)') (IPPT2(IRES,I),I=2,4)
WRITE(6,'(15H USSIT0: GROUP=,I5,24H. SUBGROUP CALCULATION B,
1 37HASED ON RESPONSE MATRICES. ISOTOPE='',A12,2H''.)') IGRP,
2 TEXT12
ENDIF
IF(IMPX.GT.2) THEN
DO 400 IND=1,NBNRS
T1=0.0
DO 390 INOR=1,NOR(IRES,IGRP)
T1=T1+WEIGH(INOR,IRES)*XFLUX(IND,INOR,IRES)
390 CONTINUE
WRITE(6,'(31H USSIT0: AVERAGED FLUX IN GROUP,I4,8H AND RES,
1 12HONANT REGION,I4,21H FOR RESONANT ISOTOPE,I4,2H =,F9.5)')
2 IGRP,IND,IRES,T1
400 CONTINUE
ENDIF
*
IASM=IASM+NORI
ENDIF
420 CONTINUE
*----
* SOLVE FOR THE MULTIBAND FLUX (VECTOR OF LENGTH NREG).
*----
IDIR=0
LEXAC=.FALSE.
IF(IMPX.GT.5) WRITE(6,'(/33H USSIT0: PROCESSING MULTIBAND FLU,
1 14HX (IL=1) WITH ,A,1H.)') CDOOR
IPMACR=C_NULL_PTR
IPSOU=C_NULL_PTR
REBFLG=.FALSE.
CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,NASM,NBMIX,
1 IDIR,NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,
2 IPSOU,REBFLG)
*----
* INTEGRATE THE REGION-ORDERED FLUX OVER SUBGROUPS.
*----
IASM=0
DO 480 IGRP=1,NGRP
IF(MASKG(IGRP).AND.(GOLD(IRES,IGRP).EQ.-999.)) THEN
UNGAR(:NUN,IRES,IGRP)=0.0
NORI=NOR(IRES,IGRP)
DO 475 INOR=1,NORI
KPSYS=LCMGIL(IPSYS,IASM+INOR)
IOF=(IASM+INOR-1)*NUN
CALL LCMPUT(KPSYS,'FUNKNO$USS',NUN,2,FUN(IOF+1))
*----
* NORMALIZE THE MULTIBAND FLUX. THIS NORMALIZATION IS ONLY REQUIRED IF
* THE MUTUAL SELF-SHIELDING MODEL IS USED.
*----
IF((NIRES.GT.1).AND.(GOLD(IRES,IGRP).EQ.-999.).AND.(ICORR.EQ.0))
1 THEN
IOFF=(IASM+INOR-1)*NUN
AWPHI(0:NBNRS)=0.0
DO 430 I=1,NREG
IBM=MAT(I)
IF(IBM.GT.0) THEN
IND=IREX(IBM)
AWPHI(IND)=AWPHI(IND)+FUN(IOFF+KEYFLX(I))*VOL(I)/
1 VOLMER(IND)
ENDIF
430 CONTINUE
CALL LCMGET(KPSYS,'DRAGON-PAV',PAV(0,0))
DO 450 IND=0,NBNRS
TT=0.0
DO 440 J=1,NREG
IBM=MAT(J)
IF(IBM.GT.0) THEN
JND=IREX(IBM)
IOFS=(IASM+INOR-1)*NUN+KEYFLX(J)
TT=TT+PAV(IND,JND)*SUN(IOFS)*VOL(J)/VOLMER(JND)
ENDIF
440 CONTINUE
AWPHI(IND)=TT/AWPHI(IND)
450 CONTINUE
DO 460 I=1,NREG
IBM=MAT(I)
IF(IBM.GT.0) FUN(IOFF+KEYFLX(I))=FUN(IOFF+KEYFLX(I))*
1 AWPHI(IREX(IBM))
460 CONTINUE
ENDIF
*
DO 470 I=1,NUN
IOF=(IASM+INOR-1)*NUN+I
UNGAR(I,IRES,IGRP)=UNGAR(I,IRES,IGRP)+FUN(IOF)
470 CONTINUE
475 CONTINUE
IASM=IASM+NORI
ENDIF
480 CONTINUE
DEALLOCATE(SUN,FUN,NPSYS)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(MATRIX)
DEALLOCATE(SIGX,PAV,SIGWS,WSLD,TOTPT,WEIGH,AWPHI,SIGG,SIGS0X,
1 SIGTXS,XFLUX)
RETURN
END
|