summaryrefslogtreecommitdiff
path: root/Dragon/src/USSIST.f
blob: be654e0ad8ba7f73a65103c1be0665f2ee53cd73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
*DECK USSIST
      SUBROUTINE USSIST(MAXNOR,NGRP,MASKG,IRES,IPLI0,IPTRK,IFTRAK,
     1 CDOOR,IMPX,NBMIX,NREG,NUN,NL,IPHASE,MAXST,MAT,VOL,KEYFLX,LEAKSW,
     2 IREX,SIGGAR,TITR,ICORR,NIRES,NBNRS,NOR,CONR,GOLD,IPPT1,IPPT2,
     3 STGAR,SSGAR,VOLMER,UNGAR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the multiband fluxes as required by the subgroup method using
* the subgroup projection method (SPM):
* a) assume a single resonant isotope;
* b) use the standard solution doors of Dragon.
*
*Copyright:
* Copyright (C) 2007 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* MAXNOR  maximum order of the probability tables (PT).
* NGRP    number of energy group.
* MASKG   energy group mask pointing on self-shielded groups.
* IRES    index of the resonant isotope.
* IPLI0   pointer to the internal microscopic cross section library
*         builded by the self-shielding module.
* IPTRK   pointer to the tracking (L_TRACK signature).
* IFTRAK  file unit number used to store the tracks.
* CDOOR   name of the geometry/solution operator.
* IMPX    print flag (equal to zero for no print).
* NBMIX   number of mixtures in the internal library.
* NREG    number of regions.
* NUN     number of unknowns in the flux or source vector in one
*         energy group and one band.
* NL      number of Legendre orders required in the calculation
*         (NL=1 or higher).
* IPHASE  type of flux solution (=1 use a native flux solution door;
*         =2 use collision probabilities).
* MAXST   maximum number of fixed point iterations for the ST scattering
*         source.
* MAT     index-number of the mixture type assigned to each volume.
* VOL     volumes.
* KEYFLX  pointers of fluxes in unknown vector.
* LEAKSW  leakage switch (LEAKSW=.TRUE. if neutron leakage through
*         external boundary is present).
* IREX    fuel region index assigned to each mixture. Equal to zero
*         in non-resonant mixtures or in mixtures not used.
* SIGGAR  macroscopic x-s of the non-resonant isotopes in each mixture:
*         (*,*,*,1) total; (*,*,*,2) transport correction; 
*         (*,*,*,3) P0 scattering; (*,*,*,4) flux times P0 scattering.
* TITR    title.
* ICORR   mutual resonance shielding flag (=1 to suppress the model
*         in cases it is required in LIB operator).
* NIRES   exact number of correlated resonant isotopes.
* NBNRS   number of correlated fuel regions.
* NOR     exact order of the probability table.
* CONR    number density of the resonant isotopes.
* GOLD    type of self-shielding model (=1.0 physical probability
*         tables; =-998.0/-1000.0 subgroup projection method).
* IPPT1   pointer to LCM directory of each resonant isotope.
* IPPT2   information related to each resonant isotope:
*         IPPT2(:,1) index of a resonant region (used with infinite
*         dilution case);
*         IPPT2(:,2:4) alias name of resonant isotope.
* STGAR   averaged microscopic total xs in resonant region.
* SSGAR   averaged microscopic scattering xs in resonant region.
* VOLMER  volumes of the resonant regions.
*
*Parameters: output
* UNGAR   averaged flux unknowns.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
      USE DOORS_MOD
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPLI0,IPTRK,IPPT1(NIRES)
      INTEGER MAXNOR,NGRP,IRES,IFTRAK,IMPX,NBMIX,NREG,NUN,NL,IPHASE,
     1 MAXST,MAT(NREG),KEYFLX(NREG),IREX(NBMIX),ICORR,NIRES,NBNRS,
     2 NOR(NIRES,NGRP),IPPT2(NIRES,4)
      REAL VOL(NREG),SIGGAR(NBMIX,0:NIRES,NGRP,4),
     1 CONR(NBNRS,NIRES),GOLD(NIRES,NGRP),STGAR(NBNRS,NIRES,NGRP),
     2 SSGAR(NBNRS,NIRES,NL,NGRP),VOLMER(0:NBNRS),
     3 UNGAR(NUN,NIRES,NGRP)
      CHARACTER CDOOR*12,TITR*72
      LOGICAL LEAKSW,MASKG(NGRP)
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) IPSYS,JPLIB,KPLIB,KPSYS,JPLI0,JPLI01,IPMACR,IPSOU
      CHARACTER CBDPNM*12,TEXT12*12,TEXX12*12,HSMG*131
      DOUBLE PRECISION ZNUM,ZDEN
      LOGICAL EMPTY,LCM,LEXAC,LSPM,REBFLG
      INTEGER NALBP
*----
*  ALLOCATABLE STATEMENTS
*----
      INTEGER, ALLOCATABLE, DIMENSION(:) :: NPSYS
      REAL, ALLOCATABLE, DIMENSION(:) :: SIGTXS,SIGS0X,SIGG,FLNEW,WCOR,
     1 FUN,SUN
      REAL, ALLOCATABLE, DIMENSION(:,:) :: WEIGH,TOTPT,SIGWS
      REAL, ALLOCATABLE, DIMENSION(:,:,:) :: XFLUX
      TYPE(C_PTR) SIGP_PTR
      REAL, POINTER, DIMENSION(:) :: SIGP
*----
*  FIND THE NUMBER OF COMPONENTS REQUIRED AND ALLOCATE THE LIST OF
*  ASSEMBLY MATRICES.
*----
      NASM=0
      DO 10 IGRP=1,NGRP
      LSPM=(MASKG(IGRP).AND.((GOLD(IRES,IGRP).EQ.-998.).OR.
     1 (GOLD(IRES,IGRP).EQ.-1000.)))
      IF(LSPM) NASM=NASM+NOR(IRES,IGRP)
   10 CONTINUE
      IF(NASM.EQ.0) RETURN
      IF(NGRP.LT.250) CALL XABORT('USSIST: THIS SIMPLIFIED SELF-SHIELD'
     1 //'ING MODEL REQUIRES MORE THAN 250 ENERGY GROUPS.')
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(NPSYS(MAXNOR*NGRP))
      ALLOCATE(XFLUX(NBNRS,MAXNOR,NIRES),SIGTXS(0:NBMIX),
     1 SIGS0X(0:NBMIX),SIGG(0:NBMIX),WEIGH(MAXNOR,NIRES),
     2 TOTPT(MAXNOR,NIRES),SIGWS(MAXNOR,NIRES),FLNEW(NBNRS),
     3 WCOR(MAXNOR**2))
*----
*  CREATE A SPECIFIC DIRECTORY FOR IRES-TH RESONANT ISOTOPE.
*----
      WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
      CALL LCMSIX(IPLI0,CBDPNM,1)
      JPLI0=LCMGID(IPLI0,'NWT0-PT')
      IPSYS=LCMLID(IPLI0,'ASSEMB-RIBON',NASM)
      CALL LCMSIX(IPLI0,' ',2)
*----
*  LOOP OVER THE ENERGY GROUPS.
*----
      IASM=0
      DO 100 IGRP=1,NGRP
      LSPM=(MASKG(IGRP).AND.((GOLD(IRES,IGRP).EQ.-998.).OR.
     1 (GOLD(IRES,IGRP).EQ.-1000.)))
      IF(LSPM) THEN
         IF(IMPX.GT.2) THEN
            WRITE(TEXT12,'(3A4)') (IPPT2(IRES,J0),J0=2,4)
            WRITE(6,'(36H USSIST: PROCESS CORRELATED ISOTOPE ,A12,
     1      11H WITH INDEX,I3,9H IN GROUP,I4,22H (SUBGROUP PROJECTION ,
     2      8HMETHOD).)') TEXT12,IRES,IGRP
         ENDIF
         DO 20 JRES=1,NIRES
         IF(GOLD(JRES,IGRP).NE.GOLD(IRES,IGRP)) THEN
            WRITE(HSMG,'(32HUSSIST: PT NOT SET FOR ISOTOPE '',3A4,
     1      10H'' IN GROUP,I5,1H.)') (IPPT2(JRES,J0),J0=2,4),IGRP
            CALL XABORT(HSMG)
         ELSE IF(NOR(JRES,IGRP).GT.MAXNOR) THEN
            CALL XABORT('USSIST: MAXNOR OVERFLOW.')
         ENDIF
   20    CONTINUE
         NORI=NOR(IRES,IGRP)
         DO 40 JRES=1,NIRES
*----
*  RECOVER THE PREVIOUS FLUXES.
*----
         IF(NOR(JRES,IGRP).EQ.1) THEN
            XFLUX(:NBNRS,:MAXNOR,JRES)=1.0
         ELSE
            WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') JRES,NIRES
            CALL LCMSIX(IPLI0,CBDPNM,1)
            JPLI01=LCMGID(IPLI0,'NWT0-PT')
            CALL LCMLEL(JPLI01,IGRP,ILON,ITYLCM)
            IF(ILON.GT.NBNRS*MAXNOR) THEN
               WRITE(TEXT12,'(3A4)') (IPPT2(IRES,J0),J0=2,4)
               WRITE(HSMG,'(34HUSSIST: FLUX OVERFLOW FOR ISOTOPE ,A12)')
     1         TEXT12
               CALL XABORT(HSMG)
            ENDIF
            CALL LCMGDL(JPLI01,IGRP,XFLUX(1,1,JRES))
            CALL LCMSIX(IPLI0,' ',2)
         ENDIF
*----
*  COLLECT THE BASE POINTS IN TOTAL CROSS SECTION.
*----
         JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
         CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
         IF(ILONG.NE.0) THEN
            KPLIB=LCMGIL(JPLIB,IGRP)
            CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
            CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
            NPART=LENG/MAXNOR
            IF(LCM) THEN
               CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
               CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
            ELSE
               ALLOCATE(SIGP(MAXNOR*NPART))
               CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
            ENDIF
            DO 30 INOR=1,NOR(JRES,IGRP)
            WEIGH(INOR,JRES)=SIGP(INOR)
            TOTPT(INOR,JRES)=SIGP(MAXNOR+INOR)
            SIGWS(INOR,JRES)=SIGP(3*MAXNOR+INOR)
   30       CONTINUE
            IF(.NOT.LCM) DEALLOCATE(SIGP)
         ELSE
            WEIGH(1,JRES)=1.0
            TOTPT(1,JRES)=STGAR(IPPT2(JRES,1),JRES,IGRP)
            SIGWS(1,JRES)=SSGAR(IPPT2(JRES,1),JRES,1,IGRP)
         ENDIF
   40    CONTINUE
*----
*  SET THE MIXTURE-DEPENDENT CROSS SECTIONS.
*----
         JPLIB=LCMGID(IPPT1(IRES),'GROUP-PT')
         KPLIB=LCMGIL(JPLIB,IGRP)
         DO 90 INOR=1,NORI
         SIGTXS(0:NBMIX)=0.0
         SIGS0X(0:NBMIX)=0.0
         DO 80 IBM=1,NBMIX
         IND=IREX(IBM)
         DO 70 JRES=0,NIRES
         IF(JRES.EQ.0) THEN
*           ADMIXED NON-RESONANT ISOTOPES.
            SIGTXS(IBM)=SIGTXS(IBM)+(SIGGAR(IBM,0,IGRP,1)-
     1      SIGGAR(IBM,0,IGRP,2))
            SIGS0X(IBM)=SIGS0X(IBM)-SIGGAR(IBM,0,IGRP,2)
         ELSE IF((JRES.NE.IRES).AND.(IND.GT.0)) THEN
*           MUTUAL SHIELDING MODEL FROM CORRELATED RESONANT ISOTOPES.
            WRITE(TEXT12,'(3A4)') (IPPT2(JRES,I0),I0=2,4)
            IF((NOR(JRES,IGRP).GT.1).AND.(ICORR.NE.1)) THEN
               CALL LCMLEN(KPLIB,TEXT12,ILEN,ITYLCM)
               IF(ILEN.EQ.0) THEN
                  CALL LCMLIB(KPLIB)
                  CALL XABORT('USSIST: UNABLE TO FIND CORRELATED ISOTO'
     1            //'PE '//TEXT12//'.')
               ENDIF
               CALL LCMGET(KPLIB,TEXT12,WCOR)
            ENDIF
            IF((ICORR.EQ.1).AND.
*             ECCO CORRELATION MODEL.
     1        (IPPT2(IRES,2).EQ.IPPT2(JRES,2)).AND.
     1        (IPPT2(IRES,3).EQ.IPPT2(JRES,3))) THEN
              SIGTXS(IBM)=SIGTXS(IBM)+CONR(IND,JRES)*TOTPT(INOR,IRES)
            ELSE
              ZNUM=0.0D0
              ZDEN=0.0D0
              DO 60 I2=1,NOR(JRES,IGRP)
              IF((ICORR.EQ.1).OR.(NOR(JRES,IGRP).EQ.1)) THEN
                WWW=WEIGH(INOR,IRES)*WEIGH(I2,JRES)*XFLUX(IND,I2,JRES)
              ELSE
                WWW=WCOR((I2-1)*NORI+INOR)*XFLUX(IND,I2,JRES)
              ENDIF
              ZNUM=ZNUM+WWW*CONR(IND,JRES)*TOTPT(I2,JRES)
              ZDEN=ZDEN+WWW
   60         CONTINUE
              IF(ZNUM/ZDEN.LT.0.0) THEN
*               BADLY BEHAVED CORRELATED WEIGHT MATRIX.
                ZNUM=0.0D0
                ZDEN=0.0D0
                DO 65 I2=1,NOR(JRES,IGRP)
                WWW=WEIGH(INOR,IRES)*WEIGH(I2,JRES)*XFLUX(IND,I2,JRES)
                ZNUM=ZNUM+WWW*CONR(IND,JRES)*TOTPT(I2,JRES)
                ZDEN=ZDEN+WWW
   65           CONTINUE
              ENDIF
              SIGTXS(IBM)=SIGTXS(IBM)+REAL(ZNUM/ZDEN)
            ENDIF
         ENDIF
   70    CONTINUE
         IF(IND.GT.0) THEN
            SIGTXS(IBM)=SIGTXS(IBM)+CONR(IND,IRES)*TOTPT(INOR,IRES)
            SIGS0X(IBM)=SIGS0X(IBM)+WEIGH(INOR,IRES)*CONR(IND,IRES)*
     1      SIGWS(INOR,IRES)
         ENDIF
   80    CONTINUE
         IASM=IASM+1
         NPSYS(IASM)=IASM
         KPSYS=LCMDIL(IPSYS,IASM)
         CALL LCMPUT(KPSYS,'DRAGON-TXSC',NBMIX+1,2,SIGTXS(0))
         CALL LCMPUT(KPSYS,'DRAGON-S0XSC',NBMIX+1,2,SIGS0X(0))
   90    CONTINUE
      ELSE IF(GOLD(IRES,IGRP).EQ.-998.) THEN
         CALL LCMLEL(JPLI0,IGRP,LENG0,ITYLCM)
         IF(LENG0.NE.0) THEN
            WRITE(HSMG,'(42HUSSIST: UNEXPECTED SELF-SHIELDING DATA FOU,
     1      11HND IN GROUP,I5,1H.)') IGRP
            CALL XABORT(HSMG)
         ENDIF
      ELSE IF(GOLD(IRES,IGRP).EQ.-1000.) THEN
         CALL LCMLEL(JPLI0,IGRP,LENG0,ITYLCM)
         IF(LENG0.NE.0) THEN
            WRITE(HSMG,'(42HUSSIST: UNEXPECTED SELF-SHIELDING DATA FOU,
     1      11HND IN GROUP,I5,1H.)') IGRP
            CALL XABORT(HSMG)
         ENDIF
      ENDIF
  100 CONTINUE
*----
*  ASSEMBLY MATRIX OR REDUCED COLLISION PROBABILITIES CALCULATION.
*----
      NANI=1
      KNORM=1
      NALBP=0
      IMPY=MAX(0,IMPX-3)
      IF(IPHASE.EQ.1) THEN
*        USE A NATIVE DOOR.
         ISTRM=1
         NW=0
         CALL DOORAV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPY,NASM,NREG,
     1   NBMIX,NANI,NW,MAT,VOL,KNORM,LEAKSW,TITR,NALBP,ISTRM)
      ELSE IF(IPHASE.EQ.2) THEN
*        USE A COLLISION PROBABILITY DOOR.
         IPIJK=1
         ITPIJ=1
         CALL DOORPV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPY,NASM,NREG,
     1   NBMIX,NANI,MAT,VOL,KNORM,IPIJK,LEAKSW,ITPIJ,.FALSE.,TITR,
     2   NALBP)
      ENDIF
*----
*  LOOP OVER THE ENERGY GROUPS.
*----
      IASM=0
      DO 280 IGRP=1,NGRP
      LSPM=(MASKG(IGRP).AND.((GOLD(IRES,IGRP).EQ.-998.).OR.
     1 (GOLD(IRES,IGRP).EQ.-1000.)))
      IF(LSPM) THEN
         NORI=NOR(IRES,IGRP)
*----
*  COLLECT THE BASE POINTS IN PARTIAL CROSS SECTION.
*----
         DO 120 JRES=1,NIRES
         JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
         CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
         IF(ILONG.NE.0) THEN
            KPLIB=LCMGIL(JPLIB,IGRP)
            CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
            CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
            NPART=LENG/MAXNOR
            IF(LCM) THEN
               CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
               CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
            ELSE
               ALLOCATE(SIGP(MAXNOR*NPART))
               CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
            ENDIF
            DO 110 INOR=1,NOR(JRES,IGRP)
            WEIGH(INOR,JRES)=SIGP(INOR)
            SIGWS(INOR,JRES)=SIGP(3*MAXNOR+INOR)
  110       CONTINUE
            IF(.NOT.LCM) DEALLOCATE(SIGP)
         ELSE
            WEIGH(1,JRES)=1.0
            SIGWS(1,JRES)=SSGAR(IPPT2(JRES,1),JRES,1,IGRP)
         ENDIF
  120    CONTINUE
*----
*  RECOVER THE PREVIOUS FLUXES.
*----
         WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
         CALL LCMSIX(IPLI0,CBDPNM,1)
         JPLI01=LCMGID(IPLI0,'NWT0-PT')
         CALL LCMLEL(JPLI01,IGRP,ILON,ITYLCM)
         IF(ILON.GT.NBNRS*MAXNOR) THEN
            WRITE(TEXT12,'(3A4)') (IPPT2(IRES,J0),J0=2,4)
            WRITE(HSMG,'(34HUSSIST: FLUX OVERFLOW FOR ISOTOPE ,A12)')
     1      TEXT12
            CALL XABORT(HSMG)
         ENDIF
         CALL LCMGDL(JPLI01,IGRP,XFLUX(1,1,IRES))
         CALL LCMSIX(IPLI0,' ',2)
*----
*  ITERATIVE PROCEDURE.
*----
        ITER=0
  140   ITER=ITER+1
        IF(ITER.GT.MAXST) GO TO 240
        ERR1=0.0
        ERR2=0.0
*----
*  COMPUTE THE AVERAGED SOURCE.
*----
        ALLOCATE(FUN(NUN*NORI),SUN(NUN*NORI))
        SUN(:NUN*NORI)=0.0
        DO 195 INOR=1,NORI
        KPSYS=LCMGIL(IPSYS,IASM+INOR)
        CALL LCMLEN(KPSYS,'FUNKNO$USS',ILENG,ITYLCM)
        IF(ILENG.EQ.NUN) THEN
           CALL LCMGET(KPSYS,'FUNKNO$USS',FUN((INOR-1)*NUN+1))
        ELSE
           FUN((INOR-1)*NUN+1:INOR*NUN)=0.0
        ENDIF
        NPSYS(INOR)=IASM+INOR
        SIGG(0)=0.0
        DO 190 IBM=1,NBMIX
        SIGG(IBM)=SIGGAR(IBM,0,IGRP,3)
        IND=IREX(IBM)
        DO 150 JRES=1,NIRES
        IF((JRES.NE.IRES).AND.(IND.GT.0)) THEN
           SIGG(IBM)=SIGG(IBM)+SIGGAR(IBM,JRES,IGRP,4)
        ENDIF
  150   CONTINUE
        IF(IND.GT.0) THEN
           DO 160 JNOR=1,NORI
           IF(JNOR.NE.INOR) THEN
              SIGG(IBM)=SIGG(IBM)+WEIGH(JNOR,IRES)*CONR(IND,IRES)*
     1        SIGWS(JNOR,IRES)*XFLUX(IND,JNOR,IRES)
           ENDIF
  160      CONTINUE
        ENDIF
  190   CONTINUE
        IOF=(INOR-1)*NUN
        CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
  195   CONTINUE
*----
*  SOLVE FOR THE MULTIBAND FLUX.
*----
        IDIR=0
        LEXAC=.FALSE.
        IPMACR=C_NULL_PTR
        IPSOU=C_NULL_PTR
        REBFLG=.FALSE.
        CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,NORI,NBMIX,
     1  IDIR,NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,
     2  IPSOU,REBFLG)
*----
*  HOMOGENIZE THE FLUX AT ITERATION ITER.
*----
        UNGAR(:NUN,IRES,IGRP)=0.0
        DO 235 INOR=1,NORI
        KPSYS=LCMGIL(IPSYS,IASM+INOR)
        CALL LCMPUT(KPSYS,'FUNKNO$USS',NUN,2,FUN((INOR-1)*NUN+1))
        FLNEW(:NBNRS)=0.0
        DO 200 I=1,NREG
        IF(MAT(I).EQ.0) GO TO 200
        IOF=(INOR-1)*NUN+KEYFLX(I)
        IND=IREX(MAT(I))
        IF(IND.GT.0) FLNEW(IND)=FLNEW(IND)+FUN(IOF)*VOL(I)
  200   CONTINUE
        DO 210 IND=1,NBNRS
        FLNEW(IND)=FLNEW(IND)/VOLMER(IND)
  210   CONTINUE
*
        DO 220 I=1,NUN
        IOF=(INOR-1)*NUN+I
        UNGAR(I,IRES,IGRP)=UNGAR(I,IRES,IGRP)+FUN(IOF)*WEIGH(INOR,IRES)
  220   CONTINUE
*----
*  CONVERGENCE CONTROL.
*----
        DO 230 IND=1,NBNRS
        ERR1=MAX(ERR1,ABS(FLNEW(IND)-XFLUX(IND,INOR,IRES)))
        ERR2=MAX(ERR2,ABS(FLNEW(IND)))
        XFLUX(IND,INOR,IRES)=FLNEW(IND)
  230   CONTINUE
  235   CONTINUE
        DEALLOCATE(SUN,FUN)
        IF(IMPX.GT.2) THEN
           WRITE(TEXT12,'(3A4)') (IPPT2(IRES,I),I=2,4)
           WRITE(6,'(15H USSIST: GROUP=,I5,20H. SUBGROUP ITERATION,I4,
     1     11H. ISOTOPE='',A12,9H''. ERROR=,1P,E11.4,1H.)')
     2     IGRP,ITER,TEXT12,ERR1
        ENDIF
        IF(ERR2.GT.1.0E10) GO TO 240
        IF(ERR1.GT.1.0E-4*ERR2) GO TO 140
        IF(IMPX.GT.1) THEN
           WRITE(TEXT12,'(3A4)') (IPPT2(IRES,I),I=2,4)
           WRITE(6,'(15H USSIST: GROUP=,I5,24H. SUBGROUP ITERATION CON,
     1     11HVERGENCE IN,I4,22H ITERATIONS. ISOTOPE='',A12,2H''.)')
     2     IGRP,ITER,TEXT12
        ENDIF
        GO TO 250
*----
*  ALTERNATIVE TREATMENT IN CASE OF FAILURE OF FIXED POINT ITERATIONS.
*  USE A NON-ITERATIVE RESPONSE MATRIX APPROACH.
*----
  240   IF(IMPX.GT.0) THEN
           WRITE(TEXT12,'(3A4)') (IPPT2(IRES,I),I=2,4)
           WRITE(6,'(15H USSIST: GROUP=,I5,24H. SUBGROUP ITERATION FAI,
     1     16HLED FOR ISOTOPE ,A12,32H. USE AN ALTERNATIVE RESPONSE MA,
     2     14HTRIX APPROACH.)') IGRP,TEXT12
        ENDIF
        CALL USSEXC(MAXNOR,CDOOR,IPLI0,IPTRK,IFTRAK,IMPX,NGRP,IGRP,
     1  IASM,NBMIX,NREG,NUN,NL,IPHASE,MAT,VOL,KEYFLX,IREX,SIGGAR,TITR,
     2  NIRES,IRES,NBNRS,NOR,CONR,IPPT1,IPPT2,STGAR,SSGAR,VOLMER,
     3  XFLUX(1,1,IRES),UNGAR)
  250   IF(IMPX.GT.2) THEN
           DO 270 IND=1,NBNRS
           T1=0.0
           DO 260 INOR=1,NORI
           T1=T1+WEIGH(INOR,IRES)*XFLUX(IND,INOR,IRES)
  260      CONTINUE
           WRITE(6,'(31H USSIST: AVERAGED FLUX IN GROUP,I4,9H AND RESO,
     1     11HNANT REGION,I4,21H FOR RESONANT ISOTOPE,I4,2H =,F9.5)')
     2     IGRP,IND,IRES,T1
  270      CONTINUE
        ENDIF
        CALL LCMPDL(JPLI0,IGRP,NBNRS*NORI,2,XFLUX(1,1,IRES))
        IASM=IASM+NORI
      ENDIF
  280 CONTINUE
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(WCOR,FLNEW,SIGWS,TOTPT,WEIGH,SIGG,SIGS0X,SIGTXS,XFLUX)
      DEALLOCATE(NPSYS)
      RETURN
      END