1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
|
*DECK USSEXD
SUBROUTINE USSEXD(MAXNOR,CDOOR,IPLI0,IPTRK,IFTRAK,IMPX,NGRP,IG,
1 IASM,NBMIX,NREG,NUN,IPHASE,MAT,VOL,KEYFLX,IREX,SIGGAR,TITR,NIRES,
2 IRES,NBNRS,MRANK,CONR,GOLD,IPPT1,IPPT2,VOLMER,XFLUX,UNGAR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of the flux for the resonance spectrum expansion (RSE) method
* using the response matrix method. This is a non-iterative approach
* which is useful in exceptional cases where the fixed-point approach
* fails.
*
*Copyright:
* Copyright (C) 2024 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* MAXNOR maximum order of the probability tables (RSE).
* CDOOR name of the geometry/solution operator.
* IPLI0 pointer to the internal microscopic cross section library
* builded by the self-shielding module.
* IPTRK pointer to the tracking (L_TRACK signature).
* IFTRAK file unit number used to store the tracks.
* IMPX print flag (equal to zero for no print).
* NGRP number of energy groups.
* IG index of energy group being processed.
* IASM offset of information computed by DOORAV or DOORPV.
* NBMIX number of mixtures in the internal library.
* NREG number of regions.
* NUN number of unknowns in the flux or source vector in one
* energy group and one band.
* IPHASE type of flux solution (=1 use a native flux solution door;
* =2 use collision probabilities).
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* KEYFLX pointers of fluxes in unknown vector.
* IREX fuel region index assigned to each mixture. Equal to zero
* in non-resonant mixtures or in mixtures not used.
* SIGGAR macroscopic x-s of the non-resonant isotopes in each mixture:
* (*,*,*,1) total; (*,*,*,2) transport correction;
* (*,*,*,3) P0 scattering.
* TITR title.
* NIRES exact number of correlated resonant isotopes.
* IRES index of the resonant isotope being processed.
* NBNRS number of correlated fuel regions.
* MRANK exact order of the probability table.
* CONR number density of the resonant isotopes.
* GOLD type of self-shielding model (=1.0 physical probability
* tables; =-1001.0 resonance spectrum expansion method).
* IPPT1 pointer to LCM directory of each resonant isotope.
* IPPT2 information related to each resonant isotope:
* IPPT2(:,1) index of a resonant region (used with infinite
* dilution case);
* IPPT2(:,2:4) alias name of resonant isotope.
* VOLMER volumes of the resonant and non-resonant regions.
*
*Parameters: input/output
* XFLUX subgroup flux.
*
*Parameters: output
* UNGAR averaged fluxes per volume.
*
*-----------------------------------------------------------------------
*
USE GANLIB
USE DOORS_MOD
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPLI0,IPTRK,IPPT1(NIRES)
INTEGER MAXNOR,IFTRAK,IMPX,NGRP,IG,IASM,NBMIX,NREG,NUN,IPHASE,
1 MAT(NREG),KEYFLX(NREG),IREX(NBMIX),NIRES,IRES,NBNRS,MRANK(NGRP),
2 IPPT2(NIRES,4)
REAL VOL(NREG),SIGGAR(NBMIX,0:NIRES,NGRP,3),CONR(NBNRS,NIRES),
1 GOLD(NIRES,NGRP),VOLMER(0:NBNRS),
2 XFLUX(NBNRS,MAXNOR,NGRP),UNGAR(NREG,NIRES,NGRP)
CHARACTER CDOOR*12,TITR*72
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) IPSYS,KPSYS,IPMACR,IPSOU,IPLIB,JPLIB1,KPLIB,IOFSET
DOUBLE PRECISION QQQ,SSS,T1
LOGICAL LEXAC,REBFLG
CHARACTER CBDPNM*12,TEXT12*12
TYPE VECTOR_ARRAY
DOUBLE PRECISION, POINTER, DIMENSION(:) :: VECTOR
END TYPE VECTOR_ARRAY
TYPE(VECTOR_ARRAY) :: WEIGHT_V,GAMMA_V
*----
* ALLOCATABLE ARRAYS
*----
TYPE(C_PTR), ALLOCATABLE, DIMENSION(:) :: JPLIB2
INTEGER, ALLOCATABLE, DIMENSION(:) :: NPSYS
INTEGER, ALLOCATABLE, DIMENSION(:,:) :: NJJ
REAL, ALLOCATABLE, DIMENSION(:) :: AWPHI,FUN,SUN,SIGG
REAL, ALLOCATABLE, DIMENSION(:,:) :: PAV
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: MATRIX
TYPE MATRIX_ARRAY
DOUBLE PRECISION, POINTER, DIMENSION(:,:) :: MATRIX
END TYPE MATRIX_ARRAY
TYPE(MATRIX_ARRAY), ALLOCATABLE, DIMENSION(:,:) :: SCAT_M
*----
* STATEMENT FUNCTIONS
*----
INM(IND,IM,NBNRS)=(IM-1)*NBNRS+IND
*----
* SCRATCH STORAGE ALLOCATION
*----
MI=MRANK(IG)
ALLOCATE(NJJ(NGRP,NIRES))
ALLOCATE(PAV(0:NBNRS,0:NBNRS),AWPHI(0:NBNRS))
ALLOCATE(MATRIX(NBNRS*MI,NBNRS*MI+1))
ALLOCATE(JPLIB2(NIRES),SCAT_M(NGRP,NIRES),SIGG(0:NBMIX))
*----
* RECOVER RSE INFORMATION FROM MICROLIB
*----
IPLIB=IPPT1(IRES)
JPLIB1=LCMGID(IPLIB,'GROUP-RSE')
DO JRES=1,NIRES
WRITE(TEXT12,'(3A4)') (IPPT2(JRES,I),I=2,4)
CALL LCMSIX(IPLIB,TEXT12,1)
JPLIB2(JRES)=LCMGID(IPLIB,'SCAT_M') ! SCAT_M information
CALL LCMGET(IPLIB,'NJJS00',NJJ(:NGRP,JRES))
CALL LCMSIX(IPLIB,' ',2)
ENDDO
KPLIB=LCMGIL(JPLIB1,IG)
CALL LCMGPD(KPLIB,'WEIGHT_V',IOFSET)
CALL C_F_POINTER(IOFSET,WEIGHT_V%VECTOR,(/MI/))
CALL LCMGPD(KPLIB,'GAMMA_V',IOFSET)
CALL C_F_POINTER(IOFSET,GAMMA_V%VECTOR,(/MI/))
DO JRES=1,NIRES
IPOS=1
DO JG=1,IG-1
IPOS=IPOS+NJJ(JG,JRES)
ENDDO
DO JG=IG-NJJ(IG,JRES)+1,IG
MJ=MRANK(JG)
CALL LCMGPL(JPLIB2(JRES),IPOS+IG-JG,IOFSET)
CALL C_F_POINTER(IOFSET,SCAT_M(JG,JRES)%MATRIX,(/MI,MJ/))
ENDDO
ENDDO
*----
* RECOVER THE SPECIFIC DIRECTORY FOR IRES-TH RESONANT ISOTOPE.
*----
WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
CALL LCMSIX(IPLI0,CBDPNM,1)
IPSYS=LCMGID(IPLI0,'ASSEMB-RSE')
CALL LCMSIX(IPLI0,' ',2)
*----
* COMPUTE THE AVERAGED COLLISION PROBABILITY MATRIX.
*----
ALLOCATE(NPSYS(MI*(NBNRS+1)))
ALLOCATE(FUN(NUN*MI*(NBNRS+1)),SUN(NUN*MI*(NBNRS+1)))
FUN(:NUN*MI*(NBNRS+1))=0.0
SUN(:NUN*MI*(NBNRS+1))=0.0
DO 50 IM=1,MI
DO 40 JNBN=0,NBNRS
NPSYS((IM-1)*(NBNRS+1)+JNBN+1)=IASM+IM
T1=0.0D0
DO 10 I=1,NREG
IBM=MAT(I)
IF(IBM.EQ.0) GO TO 10
IND=IREX(IBM)
IF((JNBN.EQ.0).AND.(IND.EQ.0)) THEN
SSS=SIGGAR(IBM,0,IG,3)*GAMMA_V%VECTOR(IM)
T1=T1+SSS*VOL(I)
ELSE IF(IND.EQ.JNBN) THEN
T1=T1+VOL(I)
ENDIF
10 CONTINUE
IOF=(IM-1)*NUN*(NBNRS+1)+JNBN*NUN
SIGG(0:NBMIX)=0.0
DO 20 IBM=1,NBMIX
IND=IREX(IBM)
IF((JNBN.EQ.0).AND.(IND.EQ.0)) THEN
SSS=SIGGAR(IBM,0,IG,3)*GAMMA_V%VECTOR(IM)
SIGG(IBM)=REAL(SSS,4)
ELSE IF(IND.EQ.JNBN) THEN
SIGG(IBM)=1.0
ENDIF
20 CONTINUE
CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
DO 30 I=1,NUN
IF(T1.NE.0.0) SUN(IOF+I)=SUN(IOF+I)/REAL(T1,4)
30 CONTINUE
40 CONTINUE
50 CONTINUE
*----
* SOLVE FOR THE MULTIBAND FLUX.
*----
IDIR=0
NABS=MI*(NBNRS+1)
LEXAC=.FALSE.
IPMACR=C_NULL_PTR
IPSOU=C_NULL_PTR
REBFLG=.FALSE.
CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,NABS,NBMIX,
1 IDIR,NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,
2 IPSOU,REBFLG)
*----
* HOMOGENIZE THE MULTIBAND FLUX.
*----
DO 100 IM=1,MI
PAV(0:NBNRS,0:NBNRS)=0.0
DO 70 JNBN=0,NBNRS
DO 60 I=1,NREG
IBM=MAT(I)
IF(IBM.EQ.0) GO TO 60
IOF=(IM-1)*NUN*(NBNRS+1)+JNBN*NUN+KEYFLX(I)-1
PAV(IREX(IBM),JNBN)=PAV(IREX(IBM),JNBN)+FUN(IOF+1)*VOL(I)
60 CONTINUE
70 CONTINUE
DO 90 I=0,NBNRS
DO 80 J=0,NBNRS
IF(VOLMER(I).NE.0.0) PAV(I,J)=PAV(I,J)*VOLMER(J)/VOLMER(I)
80 CONTINUE
90 CONTINUE
KPSYS=LCMGIL(IPSYS,IASM+IM)
CALL LCMPUT(KPSYS,'DRAGON-PAV',(NBNRS+1)**2,2,PAV(0,0))
100 CONTINUE
DEALLOCATE(SUN,FUN,NPSYS)
*----
* RESPONSE MATRIX APPROACH. LOOP OVER THE SECONDARY SUBGROUPS.
*----
MATRIX(:NBNRS*MI,:NBNRS*MI+1)=0.0D0
DO 200 IM=1,MI
KPSYS=LCMGIL(IPSYS,IASM+IM)
CALL LCMGET(KPSYS,'DRAGON-PAV',PAV(0,0))
*----
* LOOP OVER THE PRIMARY SUBGROUPS. MI+1 IS THE SOURCE.
*----
DO 190 JM=1,MI+1
IF(JM.LE.MI) THEN
JNBMAX=NBNRS
ELSE
JNBMAX=1
ENDIF
DO 180 JNBN=1,JNBMAX
AWPHI(1:NBNRS)=0.0
DO 160 I=1,NREG
IBM=MAT(I)
IF(IBM.EQ.0) GO TO 160
JND=IREX(IBM)
QQQ=0.0D0
IF(JM.EQ.MI+1) THEN
QQQ=QQQ+SIGGAR(IBM,0,IG,3)*GAMMA_V%VECTOR(IM)
IF(JND.NE.0) THEN
DO 130 JRES=1,NIRES
DENSIT=CONR(JND,JRES)
DO 120 JG=IG-NJJ(IG,JRES)+1,IG-1
IF(GOLD(IRES,JG).NE.-1001.) CYCLE
DO 110 KM=1,MRANK(JG)
QQQ=QQQ+DENSIT*SCAT_M(JG,JRES)%MATRIX(IM,KM)*
1 XFLUX(JND,KM,JG)
110 CONTINUE
120 CONTINUE
130 CONTINUE
ENDIF
ELSE IF((JND.EQ.JNBN).AND.(JM.NE.IM)) THEN
DO 140 JRES=1,NIRES
DENSIT=CONR(JND,JRES)
IF(GOLD(IRES,IG).NE.-1001.) CYCLE
IF(JM.EQ.IM) CYCLE
QQQ=QQQ-DENSIT*SCAT_M(IG,JRES)%MATRIX(IM,JM)
140 CONTINUE
ENDIF
DO 150 IND=1,NBNRS
AWPHI(IND)=AWPHI(IND)+PAV(IND,JND)*REAL(QQQ,4)*VOL(I)/VOLMER(JND)
150 CONTINUE
160 CONTINUE
DO 170 IND=1,NBNRS
MATRIX(INM(IND,IM,NBNRS),INM(JNBN,JM,NBNRS))=AWPHI(IND)
170 CONTINUE
180 CONTINUE
190 CONTINUE
200 CONTINUE
*
DO 210 I=1,NBNRS*MI
MATRIX(I,I)=MATRIX(I,I)+1.0D0
210 CONTINUE
CALL ALSBD(NBNRS*MI,1,MATRIX,IER,NBNRS*MI)
IF(IER.NE.0) CALL XABORT('USSEXD: SINGULAR MATRIX.')
XFLUX(:NBNRS,:MAXNOR,IG)=0.0
DO 230 IND=1,NBNRS
DO 220 IM=1,MI
I1=INM(IND,IM,NBNRS)
XFLUX(IND,IM,IG)=REAL(MATRIX(I1,NBNRS*MI+1))
220 CONTINUE
230 CONTINUE
* END OF RESPONSE MATRIX APPROACH.
*----
* COMPUTE THE AVERAGED SOURCE.
*----
ALLOCATE(FUN(NUN*MI),SUN(NUN*MI))
SUN(:NUN*MI)=0.0
ALLOCATE(NPSYS(MI))
DO 250 IM=1,MI
NPSYS(IM)=IASM+IM
KPSYS=LCMGIL(IPSYS,IASM+IM)
CALL LCMLEN(KPSYS,'FUNKNO$USS',ILENG,ITYLCM)
IF(ILENG.EQ.NUN) THEN
CALL LCMGET(KPSYS,'FUNKNO$USS',FUN((IM-1)*NUN+1))
ELSE
FUN((IM-1)*NUN+1:IM*NUN)=0.0
ENDIF
SIGG(0:NBMIX)=0.0
DO 240 IBM=1,NBMIX
IND=IREX(IBM)
QQQ=SIGGAR(IBM,0,IG,3)*GAMMA_V%VECTOR(IM)
IF(IND.GT.0) THEN
DO JG=1,IG
DO JRES=1,NIRES
IF(GOLD(IRES,JG).NE.-1001.) CYCLE
IF(JG.LT.IG-NJJ(IG,JRES)+1) CYCLE
DENSIT=CONR(IND,JRES)
DO JM=1,MRANK(JG)
IF((JG.EQ.IG).AND.(JM.EQ.IM)) CYCLE
QQQ=QQQ+DENSIT*SCAT_M(JG,JRES)%MATRIX(IM,JM)*
1 XFLUX(IND,JM,JG)
ENDDO
ENDDO
ENDDO
ENDIF
SIGG(IBM)=REAL(QQQ,4)
240 CONTINUE
IOF=(IM-1)*NUN
CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
250 CONTINUE
*
IF(IMPX.GT.0) THEN
WRITE(TEXT12,'(3A4)') (IPPT2(IRES,I),I=2,4)
WRITE(6,'(15H USSEXD: GROUP=,I5,24H. SUBGROUP CALCULATION B,
1 37HASED ON RESPONSE MATRICES. ISOTOPE='',A12,2H''.)') IG,
2 TEXT12
ENDIF
*----
* SOLVE FOR THE MULTIBAND FLUX (VECTOR OF LENGTH NREG).
*----
IPMACR=C_NULL_PTR
IPSOU=C_NULL_PTR
REBFLG=.FALSE.
CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,MI,NBMIX,IDIR,
1 NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,IPSOU,
2 REBFLG)
DEALLOCATE(NPSYS)
*----
* INTEGRATE THE REGION-ORDERED FLUX OVER SUBGROUPS AND COMPUTE UNGAR,
* THE REGION-ORDERED FLUX.
*----
UNGAR(:NREG,IRES,IG)=0.0
DO 270 IM=1,MI
KPSYS=LCMGIL(IPSYS,IASM+IM)
IOF=(IM-1)*NUN
CALL LCMPUT(KPSYS,'FUNKNO$USS',NUN,2,FUN(IOF+1))
*
DO 260 I=1,NREG
IOF=(IM-1)*NUN+KEYFLX(I)
UNGAR(I,IRES,IG)=UNGAR(I,IRES,IG)+REAL(WEIGHT_V%VECTOR(IM)*
1 FUN(IOF),4)
260 CONTINUE
270 CONTINUE
DEALLOCATE(SUN,FUN)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(SIGG,SCAT_M,JPLIB2)
DEALLOCATE(MATRIX)
DEALLOCATE(AWPHI,PAV)
DEALLOCATE(NJJ)
RETURN
END
|