summaryrefslogtreecommitdiff
path: root/Dragon/src/USSEXD.f
blob: 31f762213d4ee1d1bffcd74088136f460f61fba4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
*DECK USSEXD
      SUBROUTINE USSEXD(MAXNOR,CDOOR,IPLI0,IPTRK,IFTRAK,IMPX,NGRP,IG,
     1 IASM,NBMIX,NREG,NUN,IPHASE,MAT,VOL,KEYFLX,IREX,SIGGAR,TITR,NIRES,
     2 IRES,NBNRS,MRANK,CONR,GOLD,IPPT1,IPPT2,VOLMER,XFLUX,UNGAR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of the flux for the resonance spectrum expansion (RSE) method
* using the response matrix method. This is a non-iterative approach
* which is useful in exceptional cases where the fixed-point approach
* fails.
*
*Copyright:
* Copyright (C) 2024 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* MAXNOR  maximum order of the probability tables (RSE).
* CDOOR   name of the geometry/solution operator.
* IPLI0   pointer to the internal microscopic cross section library
*         builded by the self-shielding module.
* IPTRK   pointer to the tracking (L_TRACK signature).
* IFTRAK  file unit number used to store the tracks.
* IMPX    print flag (equal to zero for no print).
* NGRP    number of energy groups.
* IG      index of energy group being processed.
* IASM    offset of information computed by DOORAV or DOORPV.
* NBMIX   number of mixtures in the internal library.
* NREG    number of regions.
* NUN     number of unknowns in the flux or source vector in one
*         energy group and one band.
* IPHASE  type of flux solution (=1 use a native flux solution door;
*         =2 use collision probabilities).
* MAT     index-number of the mixture type assigned to each volume.
* VOL     volumes.
* KEYFLX  pointers of fluxes in unknown vector.
* IREX    fuel region index assigned to each mixture. Equal to zero
*         in non-resonant mixtures or in mixtures not used.
* SIGGAR  macroscopic x-s of the non-resonant isotopes in each mixture:
*         (*,*,*,1) total; (*,*,*,2) transport correction; 
*         (*,*,*,3) P0 scattering.
* TITR    title.
* NIRES   exact number of correlated resonant isotopes.
* IRES    index of the resonant isotope being processed.
* NBNRS   number of correlated fuel regions.
* MRANK   exact order of the probability table.
* CONR    number density of the resonant isotopes.
* GOLD    type of self-shielding model (=1.0 physical probability
*         tables; =-1001.0 resonance spectrum expansion method).
* IPPT1   pointer to LCM directory of each resonant isotope.
* IPPT2   information related to each resonant isotope:
*         IPPT2(:,1) index of a resonant region (used with infinite
*         dilution case);
*         IPPT2(:,2:4) alias name of resonant isotope.
* VOLMER  volumes of the resonant and non-resonant regions.
*
*Parameters: input/output
* XFLUX   subgroup flux.
*
*Parameters: output
* UNGAR   averaged fluxes per volume.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
      USE DOORS_MOD
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) IPLI0,IPTRK,IPPT1(NIRES)
      INTEGER MAXNOR,IFTRAK,IMPX,NGRP,IG,IASM,NBMIX,NREG,NUN,IPHASE,
     1 MAT(NREG),KEYFLX(NREG),IREX(NBMIX),NIRES,IRES,NBNRS,MRANK(NGRP),
     2 IPPT2(NIRES,4)
      REAL VOL(NREG),SIGGAR(NBMIX,0:NIRES,NGRP,3),CONR(NBNRS,NIRES),
     1 GOLD(NIRES,NGRP),VOLMER(0:NBNRS),
     2 XFLUX(NBNRS,MAXNOR,NGRP),UNGAR(NREG,NIRES,NGRP)
      CHARACTER CDOOR*12,TITR*72
*----
*  LOCAL VARIABLES
*----
      TYPE(C_PTR) IPSYS,KPSYS,IPMACR,IPSOU,IPLIB,JPLIB1,KPLIB,IOFSET
      DOUBLE PRECISION QQQ,SSS,T1
      LOGICAL LEXAC,REBFLG
      CHARACTER CBDPNM*12,TEXT12*12
      TYPE VECTOR_ARRAY
        DOUBLE PRECISION, POINTER, DIMENSION(:) :: VECTOR
      END TYPE VECTOR_ARRAY
      TYPE(VECTOR_ARRAY) :: WEIGHT_V,GAMMA_V
*----
*  ALLOCATABLE ARRAYS
*----
      TYPE(C_PTR), ALLOCATABLE, DIMENSION(:) ::  JPLIB2
      INTEGER, ALLOCATABLE, DIMENSION(:) :: NPSYS
      INTEGER, ALLOCATABLE, DIMENSION(:,:) :: NJJ
      REAL, ALLOCATABLE, DIMENSION(:) :: AWPHI,FUN,SUN,SIGG
      REAL, ALLOCATABLE, DIMENSION(:,:) :: PAV
      DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: MATRIX
      TYPE MATRIX_ARRAY
        DOUBLE PRECISION, POINTER, DIMENSION(:,:) :: MATRIX
      END TYPE MATRIX_ARRAY
      TYPE(MATRIX_ARRAY), ALLOCATABLE, DIMENSION(:,:) :: SCAT_M
*----
*  STATEMENT FUNCTIONS
*----
      INM(IND,IM,NBNRS)=(IM-1)*NBNRS+IND
*----
*  SCRATCH STORAGE ALLOCATION
*----
      MI=MRANK(IG)
      ALLOCATE(NJJ(NGRP,NIRES))
      ALLOCATE(PAV(0:NBNRS,0:NBNRS),AWPHI(0:NBNRS))
      ALLOCATE(MATRIX(NBNRS*MI,NBNRS*MI+1))
      ALLOCATE(JPLIB2(NIRES),SCAT_M(NGRP,NIRES),SIGG(0:NBMIX))
*----
*  RECOVER RSE INFORMATION FROM MICROLIB
*----
      IPLIB=IPPT1(IRES)
      JPLIB1=LCMGID(IPLIB,'GROUP-RSE')
      DO JRES=1,NIRES
        WRITE(TEXT12,'(3A4)') (IPPT2(JRES,I),I=2,4)
        CALL LCMSIX(IPLIB,TEXT12,1)
          JPLIB2(JRES)=LCMGID(IPLIB,'SCAT_M') ! SCAT_M information
          CALL LCMGET(IPLIB,'NJJS00',NJJ(:NGRP,JRES))
        CALL LCMSIX(IPLIB,' ',2)
      ENDDO
      KPLIB=LCMGIL(JPLIB1,IG)
      CALL LCMGPD(KPLIB,'WEIGHT_V',IOFSET)
      CALL C_F_POINTER(IOFSET,WEIGHT_V%VECTOR,(/MI/))
      CALL LCMGPD(KPLIB,'GAMMA_V',IOFSET)
      CALL C_F_POINTER(IOFSET,GAMMA_V%VECTOR,(/MI/))
      DO JRES=1,NIRES
        IPOS=1
        DO JG=1,IG-1
          IPOS=IPOS+NJJ(JG,JRES)
        ENDDO
        DO JG=IG-NJJ(IG,JRES)+1,IG
          MJ=MRANK(JG)
          CALL LCMGPL(JPLIB2(JRES),IPOS+IG-JG,IOFSET)
          CALL C_F_POINTER(IOFSET,SCAT_M(JG,JRES)%MATRIX,(/MI,MJ/))
        ENDDO
      ENDDO
*----
*  RECOVER THE SPECIFIC DIRECTORY FOR IRES-TH RESONANT ISOTOPE.
*----
      WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
      CALL LCMSIX(IPLI0,CBDPNM,1)
      IPSYS=LCMGID(IPLI0,'ASSEMB-RSE')
      CALL LCMSIX(IPLI0,' ',2)
*----
*  COMPUTE THE AVERAGED COLLISION PROBABILITY MATRIX.
*----
      ALLOCATE(NPSYS(MI*(NBNRS+1)))
      ALLOCATE(FUN(NUN*MI*(NBNRS+1)),SUN(NUN*MI*(NBNRS+1)))
      FUN(:NUN*MI*(NBNRS+1))=0.0
      SUN(:NUN*MI*(NBNRS+1))=0.0
      DO 50 IM=1,MI
      DO 40 JNBN=0,NBNRS
      NPSYS((IM-1)*(NBNRS+1)+JNBN+1)=IASM+IM
      T1=0.0D0
      DO 10 I=1,NREG
      IBM=MAT(I)
      IF(IBM.EQ.0) GO TO 10
      IND=IREX(IBM)
      IF((JNBN.EQ.0).AND.(IND.EQ.0)) THEN
         SSS=SIGGAR(IBM,0,IG,3)*GAMMA_V%VECTOR(IM)
         T1=T1+SSS*VOL(I)
      ELSE IF(IND.EQ.JNBN) THEN
         T1=T1+VOL(I)
      ENDIF
   10 CONTINUE
      IOF=(IM-1)*NUN*(NBNRS+1)+JNBN*NUN
      SIGG(0:NBMIX)=0.0
      DO 20 IBM=1,NBMIX
      IND=IREX(IBM)
      IF((JNBN.EQ.0).AND.(IND.EQ.0)) THEN
         SSS=SIGGAR(IBM,0,IG,3)*GAMMA_V%VECTOR(IM)
         SIGG(IBM)=REAL(SSS,4)
      ELSE IF(IND.EQ.JNBN) THEN
         SIGG(IBM)=1.0
      ENDIF
   20 CONTINUE
      CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
      DO 30 I=1,NUN
      IF(T1.NE.0.0) SUN(IOF+I)=SUN(IOF+I)/REAL(T1,4)
   30 CONTINUE
   40 CONTINUE
   50 CONTINUE
*----
*  SOLVE FOR THE MULTIBAND FLUX.
*----
      IDIR=0
      NABS=MI*(NBNRS+1)
      LEXAC=.FALSE.
      IPMACR=C_NULL_PTR
      IPSOU=C_NULL_PTR
      REBFLG=.FALSE.
      CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,NABS,NBMIX,
     1 IDIR,NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,
     2 IPSOU,REBFLG)
*----
*  HOMOGENIZE THE MULTIBAND FLUX.
*----
      DO 100 IM=1,MI
      PAV(0:NBNRS,0:NBNRS)=0.0
      DO 70 JNBN=0,NBNRS
      DO 60 I=1,NREG
      IBM=MAT(I)
      IF(IBM.EQ.0) GO TO 60
      IOF=(IM-1)*NUN*(NBNRS+1)+JNBN*NUN+KEYFLX(I)-1
      PAV(IREX(IBM),JNBN)=PAV(IREX(IBM),JNBN)+FUN(IOF+1)*VOL(I)
   60 CONTINUE
   70 CONTINUE
      DO 90 I=0,NBNRS
      DO 80 J=0,NBNRS
      IF(VOLMER(I).NE.0.0) PAV(I,J)=PAV(I,J)*VOLMER(J)/VOLMER(I)
   80 CONTINUE
   90 CONTINUE
      KPSYS=LCMGIL(IPSYS,IASM+IM)
      CALL LCMPUT(KPSYS,'DRAGON-PAV',(NBNRS+1)**2,2,PAV(0,0))
  100 CONTINUE
      DEALLOCATE(SUN,FUN,NPSYS)
*----
*  RESPONSE MATRIX APPROACH. LOOP OVER THE SECONDARY SUBGROUPS.
*----
      MATRIX(:NBNRS*MI,:NBNRS*MI+1)=0.0D0
      DO 200 IM=1,MI
      KPSYS=LCMGIL(IPSYS,IASM+IM)
      CALL LCMGET(KPSYS,'DRAGON-PAV',PAV(0,0))
*----
*  LOOP OVER THE PRIMARY SUBGROUPS. MI+1 IS THE SOURCE.
*----
      DO 190 JM=1,MI+1
      IF(JM.LE.MI) THEN
         JNBMAX=NBNRS
      ELSE
         JNBMAX=1
      ENDIF
      DO 180 JNBN=1,JNBMAX
      AWPHI(1:NBNRS)=0.0
      DO 160 I=1,NREG
      IBM=MAT(I)
      IF(IBM.EQ.0) GO TO 160
      JND=IREX(IBM)
      QQQ=0.0D0
      IF(JM.EQ.MI+1) THEN
         QQQ=QQQ+SIGGAR(IBM,0,IG,3)*GAMMA_V%VECTOR(IM)
         IF(JND.NE.0) THEN
           DO 130 JRES=1,NIRES
           DENSIT=CONR(JND,JRES)
           DO 120 JG=IG-NJJ(IG,JRES)+1,IG-1
           IF(GOLD(IRES,JG).NE.-1001.) CYCLE
           DO 110 KM=1,MRANK(JG)
           QQQ=QQQ+DENSIT*SCAT_M(JG,JRES)%MATRIX(IM,KM)*
     1     XFLUX(JND,KM,JG)
  110      CONTINUE
  120      CONTINUE
  130      CONTINUE
         ENDIF
      ELSE IF((JND.EQ.JNBN).AND.(JM.NE.IM)) THEN
         DO 140 JRES=1,NIRES
         DENSIT=CONR(JND,JRES)
         IF(GOLD(IRES,IG).NE.-1001.) CYCLE
         IF(JM.EQ.IM) CYCLE
         QQQ=QQQ-DENSIT*SCAT_M(IG,JRES)%MATRIX(IM,JM)
  140    CONTINUE
      ENDIF
      DO 150 IND=1,NBNRS
      AWPHI(IND)=AWPHI(IND)+PAV(IND,JND)*REAL(QQQ,4)*VOL(I)/VOLMER(JND)
  150 CONTINUE
  160 CONTINUE
      DO 170 IND=1,NBNRS
      MATRIX(INM(IND,IM,NBNRS),INM(JNBN,JM,NBNRS))=AWPHI(IND)
  170 CONTINUE
  180 CONTINUE
  190 CONTINUE
  200 CONTINUE
*
      DO 210 I=1,NBNRS*MI
      MATRIX(I,I)=MATRIX(I,I)+1.0D0
  210 CONTINUE
      CALL ALSBD(NBNRS*MI,1,MATRIX,IER,NBNRS*MI)
      IF(IER.NE.0) CALL XABORT('USSEXD: SINGULAR MATRIX.')
      XFLUX(:NBNRS,:MAXNOR,IG)=0.0
      DO 230 IND=1,NBNRS
      DO 220 IM=1,MI
      I1=INM(IND,IM,NBNRS)
      XFLUX(IND,IM,IG)=REAL(MATRIX(I1,NBNRS*MI+1))
  220 CONTINUE
  230 CONTINUE
* END OF RESPONSE MATRIX APPROACH.
*----
*  COMPUTE THE AVERAGED SOURCE.
*----
      ALLOCATE(FUN(NUN*MI),SUN(NUN*MI))
      SUN(:NUN*MI)=0.0
      ALLOCATE(NPSYS(MI))
      DO 250 IM=1,MI
      NPSYS(IM)=IASM+IM
      KPSYS=LCMGIL(IPSYS,IASM+IM)
      CALL LCMLEN(KPSYS,'FUNKNO$USS',ILENG,ITYLCM)
      IF(ILENG.EQ.NUN) THEN
        CALL LCMGET(KPSYS,'FUNKNO$USS',FUN((IM-1)*NUN+1))
      ELSE
        FUN((IM-1)*NUN+1:IM*NUN)=0.0
      ENDIF
      SIGG(0:NBMIX)=0.0
      DO 240 IBM=1,NBMIX
      IND=IREX(IBM)
      QQQ=SIGGAR(IBM,0,IG,3)*GAMMA_V%VECTOR(IM)
      IF(IND.GT.0) THEN
        DO JG=1,IG
          DO JRES=1,NIRES
            IF(GOLD(IRES,JG).NE.-1001.) CYCLE
            IF(JG.LT.IG-NJJ(IG,JRES)+1) CYCLE
            DENSIT=CONR(IND,JRES)
            DO JM=1,MRANK(JG)
              IF((JG.EQ.IG).AND.(JM.EQ.IM)) CYCLE
              QQQ=QQQ+DENSIT*SCAT_M(JG,JRES)%MATRIX(IM,JM)*
     1        XFLUX(IND,JM,JG)
            ENDDO
          ENDDO
        ENDDO
      ENDIF
      SIGG(IBM)=REAL(QQQ,4)
  240 CONTINUE
      IOF=(IM-1)*NUN
      CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
  250 CONTINUE
*
      IF(IMPX.GT.0) THEN
         WRITE(TEXT12,'(3A4)') (IPPT2(IRES,I),I=2,4)
         WRITE(6,'(15H USSEXD: GROUP=,I5,24H. SUBGROUP CALCULATION B,
     1   37HASED ON RESPONSE MATRICES.  ISOTOPE='',A12,2H''.)') IG,
     2   TEXT12
      ENDIF
*----
*  SOLVE FOR THE MULTIBAND FLUX (VECTOR OF LENGTH NREG).
*----
      IPMACR=C_NULL_PTR
      IPSOU=C_NULL_PTR
      REBFLG=.FALSE.
      CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,MI,NBMIX,IDIR,
     1 NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,IPSOU,
     2 REBFLG)
      DEALLOCATE(NPSYS)
*----
*  INTEGRATE THE REGION-ORDERED FLUX OVER SUBGROUPS AND COMPUTE UNGAR,
*  THE REGION-ORDERED FLUX.
*----
      UNGAR(:NREG,IRES,IG)=0.0
      DO 270 IM=1,MI
      KPSYS=LCMGIL(IPSYS,IASM+IM)
      IOF=(IM-1)*NUN
      CALL LCMPUT(KPSYS,'FUNKNO$USS',NUN,2,FUN(IOF+1))
*
      DO 260 I=1,NREG
      IOF=(IM-1)*NUN+KEYFLX(I)
      UNGAR(I,IRES,IG)=UNGAR(I,IRES,IG)+REAL(WEIGHT_V%VECTOR(IM)*
     1 FUN(IOF),4)
  260 CONTINUE
  270 CONTINUE
      DEALLOCATE(SUN,FUN)
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(SIGG,SCAT_M,JPLIB2)
      DEALLOCATE(MATRIX)
      DEALLOCATE(AWPHI,PAV)
      DEALLOCATE(NJJ)
      RETURN
      END