1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
*DECK USSEXC
SUBROUTINE USSEXC(MAXNOR,CDOOR,IPLI0,IPTRK,IFTRAK,IMPX,NGRP,IGRP,
1 IASM,NBMIX,NREG,NUN,NL,IPHASE,MAT,VOL,KEYFLX,IREX,SIGGAR,TITR,
2 NIRES,IRES,NBNRS,NOR,CONR,IPPT1,IPPT2,STGAR,SSGAR,VOLMER,XFLUX,
3 UNGAR)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solution of the flux for the subgroup projection method (SPM) using
* the response matrix method. This is a non-iterative approach which is
* useful in exceptional cases where the fixed-point approach fails.
*
*Copyright:
* Copyright (C) 2010 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* MAXNOR maximum order of the probability tables (PT).
* CDOOR name of the geometry/solution operator.
* IPLI0 pointer to the internal microscopic cross section library
* builded by the self-shielding module.
* IPTRK pointer to the tracking (L_TRACK signature).
* IFTRAK file unit number used to store the tracks.
* IMPX print flag (equal to zero for no print).
* NGRP number of energy groups.
* IGRP index of energy group being processed.
* IASM offset of information computed by DOORAV or DOORPV.
* NBMIX number of mixtures in the internal library.
* NREG number of regions.
* NUN number of unknowns in the flux or source vector in one
* energy group and one band.
* NL number of Legendre orders required in the calculation
* (NL=1 or higher).
* IPHASE type of flux solution (=1 use a native flux solution door;
* =2 use collision probabilities).
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* KEYFLX pointers of fluxes in unknown vector.
* IREX fuel region index assigned to each mixture. Equal to zero
* in non-resonant mixtures or in mixtures not used.
* SIGGAR macroscopic x-s of the non-resonant isotopes in each mixture:
* (*,*,*,1) total; (*,*,*,2) transport correction;
* (*,*,*,3) P0 scattering; (*,*,*,4) flux times P0 scattering.
* TITR title.
* NIRES exact number of correlated resonant isotopes.
* IRES index of the resonant isotope being processed.
* NBNRS number of correlated fuel regions.
* NOR exact order of the probability table.
* CONR number density of the resonant isotopes.
* IPPT1 pointer to LCM directory of each resonant isotope.
* IPPT2 information related to each resonant isotope:
* IPPT2(:,1) index of a resonant region (used with infinite
* dilution case);
* IPPT2(:,2:4) alias name of resonant isotope.
* STGAR averaged microscopic total xs in resonant region.
* SSGAR averaged microscopic scattering xs in resonant region.
* VOLMER volumes of the resonant and non-resonant regions.
*
*Parameters: input/output
* XFLUX subgroup flux.
*
*Parameters: output
* UNGAR averaged flux unknowns.
*
*-----------------------------------------------------------------------
*
USE GANLIB
USE DOORS_MOD
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPLI0,IPTRK,IPPT1(NIRES)
INTEGER MAXNOR,IFTRAK,IMPX,NGRP,IGRP,IASM,NBMIX,NREG,NUN,NL,
1 IPHASE,MAT(NREG),KEYFLX(NREG),IREX(NBMIX),NIRES,IRES,NBNRS,
2 NOR(NIRES,NGRP),IPPT2(NIRES,4)
REAL VOL(NREG),SIGGAR(NBMIX,0:NIRES,NGRP,4),CONR(NBNRS,NIRES),
1 STGAR(NBNRS,NIRES,NGRP),SSGAR(NBNRS,NIRES,NL,NGRP),
2 VOLMER(0:NBNRS),XFLUX(NBNRS,MAXNOR),UNGAR(NUN,NIRES,NGRP)
CHARACTER CDOOR*12,TITR*72
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) IPSYS,KPSYS,JPLIB,KPLIB,IPMACR,IPSOU
LOGICAL EMPTY,LCM,LEXAC,REBFLG
CHARACTER CBDPNM*12,TEXT12*12,TEXX12*12
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: NPSYS
REAL, ALLOCATABLE, DIMENSION(:) :: AWPHI,FUN,SUN,SIGG
REAL, ALLOCATABLE, DIMENSION(:,:) :: WEIGH,TOTPT,SIGWS,PAV
DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:,:) :: MATRIX
TYPE(C_PTR) SIGP_PTR
REAL, POINTER, DIMENSION(:) :: SIGP
*----
* STATEMENT FUNCTIONS
*----
INM(IND,INOR,NBNRS)=(INOR-1)*NBNRS+IND
*----
* SCRATCH STORAGE ALLOCATION
*----
NORI=NOR(IRES,IGRP)
ALLOCATE(WEIGH(MAXNOR,NIRES),TOTPT(MAXNOR,NIRES),
1 SIGWS(MAXNOR,NIRES),PAV(0:NBNRS,0:NBNRS),AWPHI(0:NBNRS),
2 SIGG(0:NBMIX))
ALLOCATE(MATRIX(NBNRS*NORI,NBNRS*NORI+1))
*----
* RECOVER THE SPECIFIC DIRECTORY FOR IRES-TH RESONANT ISOTOPE.
*----
WRITE(CBDPNM,'(3HCOR,I4.4,1H/,I4.4)') IRES,NIRES
CALL LCMSIX(IPLI0,CBDPNM,1)
IPSYS=LCMGID(IPLI0,'ASSEMB-RIBON')
CALL LCMSIX(IPLI0,' ',2)
*----
* COMPUTE THE AVERAGED COLLISION PROBABILITY MATRIX.
*----
ALLOCATE(NPSYS(NORI*(NBNRS+1)))
ALLOCATE(FUN(NUN*NORI*(NBNRS+1)),SUN(NUN*NORI*(NBNRS+1)))
FUN(:NUN*NORI*(NBNRS+1))=0.0
SUN(:NUN*NORI*(NBNRS+1))=0.0
DO 50 INOR=1,NORI
DO 40 JNBN=0,NBNRS
NPSYS((INOR-1)*(NBNRS+1)+JNBN+1)=IASM+INOR
T1=0.0
DO 10 I=1,NREG
IBM=MAT(I)
IF(IBM.EQ.0) GO TO 10
IND=IREX(IBM)
IF((JNBN.EQ.0).AND.(IND.EQ.0)) THEN
T1=T1+SIGGAR(IBM,0,IGRP,3)*VOL(I)
ELSE IF(IND.EQ.JNBN) THEN
T1=T1+VOL(I)
ENDIF
10 CONTINUE
SIGG(0:NBMIX)=0.0
DO 20 IBM=1,NBMIX
IND=IREX(IBM)
IF((JNBN.EQ.0).AND.(IND.EQ.0)) THEN
SIGG(IBM)=SIGG(IBM)+SIGGAR(IBM,0,IGRP,3)
ELSE IF(IND.EQ.JNBN) THEN
SIGG(IBM)=SIGG(IBM)+1.0
ENDIF
20 ENDDO
IOF=(INOR-1)*NUN*(NBNRS+1)+JNBN*NUN
CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
DO 30 I=1,NUN
IF(T1.NE.0.0) SUN(IOF+I)=SUN(IOF+I)/T1
30 CONTINUE
40 CONTINUE
50 CONTINUE
*----
* SOLVE FOR THE MULTIBAND FLUX.
*----
IDIR=0
NABS=NORI*(NBNRS+1)
LEXAC=.FALSE.
IPMACR=C_NULL_PTR
IPSOU=C_NULL_PTR
REBFLG=.FALSE.
CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,NABS,NBMIX,
1 IDIR,NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,
2 IPSOU,REBFLG)
*----
* HOMOGENIZE THE MULTIBAND FLUX.
*----
DO 170 INOR=1,NORI
PAV(0:NBNRS,0:NBNRS)=0.0
DO 155 JNBN=0,NBNRS
DO 150 I=1,NREG
IBM=MAT(I)
IF(IBM.EQ.0) GO TO 150
IOF=(INOR-1)*NUN*(NBNRS+1)+JNBN*NUN+KEYFLX(I)-1
PAV(IREX(IBM),JNBN)=PAV(IREX(IBM),JNBN)+FUN(IOF+1)*VOL(I)
150 CONTINUE
155 CONTINUE
DO 165 I=0,NBNRS
DO 160 J=0,NBNRS
IF(VOLMER(I).NE.0.0) PAV(I,J)=PAV(I,J)*VOLMER(J)/VOLMER(I)
160 CONTINUE
165 CONTINUE
KPSYS=LCMGIL(IPSYS,IASM+INOR)
CALL LCMPUT(KPSYS,'DRAGON-PAV',(NBNRS+1)**2,2,PAV(0,0))
170 CONTINUE
DEALLOCATE(SUN,FUN,NPSYS)
*----
* COLLECT THE BASE POINTS IN TOTAL AND PARTIAL CROSS SECTION.
*----
DO 200 JRES=1,NIRES
JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
IF(ILONG.NE.0) THEN
KPLIB=LCMGIL(JPLIB,IGRP)
CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
NPART=LENG/MAXNOR
IF(LCM) THEN
CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
ELSE
ALLOCATE(SIGP(MAXNOR*NPART))
CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
ENDIF
DO 190 INOR=1,NOR(JRES,IGRP)
WEIGH(INOR,JRES)=SIGP(INOR)
TOTPT(INOR,JRES)=SIGP(MAXNOR+INOR)
SIGWS(INOR,JRES)=SIGP(3*MAXNOR+INOR)
190 CONTINUE
IF(.NOT.LCM) DEALLOCATE(SIGP)
ELSE
WEIGH(1,JRES)=1.0
TOTPT(1,JRES)=STGAR(IPPT2(JRES,1),JRES,IGRP)
SIGWS(1,JRES)=SSGAR(IPPT2(JRES,1),JRES,1,IGRP)
ENDIF
200 CONTINUE
*----
* RESPONSE MATRIX APPROACH. LOOP OVER THE SECONDARY SUBGROUPS.
*----
DO 272 INOR=1,NORI
KPSYS=LCMGIL(IPSYS,IASM+INOR)
CALL LCMGET(KPSYS,'DRAGON-PAV',PAV(0,0))
*----
* LOOP OVER THE PRIMARY SUBGROUPS. NORI+1 IS THE SOURCE.
*----
DO 271 JNOR=1,NORI+1
IF(JNOR.LE.NORI) THEN
JNBMAX=NBNRS
ELSE
JNBMAX=1
ENDIF
DO 270 JNBN=1,JNBMAX
AWPHI(1:NBNRS)=0.0
DO 250 I=1,NREG
IBM=MAT(I)
IF(IBM.EQ.0) GO TO 250
JND=IREX(IBM)
QQQ=0.0
IF(JNOR.EQ.NORI+1) THEN
DO 230 JRES=0,NIRES
IF(JRES.EQ.0) THEN
QQQ=QQQ+SIGGAR(IBM,0,IGRP,3)
ELSE IF((JRES.NE.IRES).AND.(JND.GT.0)) THEN
QQQ=QQQ+SIGGAR(IBM,JRES,IGRP,4)
ENDIF
230 CONTINUE
ELSE IF((JND.EQ.JNBN).AND.(JNOR.NE.INOR)) THEN
QQQ=QQQ-WEIGH(JNOR,IRES)*CONR(JND,IRES)*SIGWS(JNOR,IRES)
ENDIF
DO 240 IND=1,NBNRS
AWPHI(IND)=AWPHI(IND)+PAV(IND,JND)*QQQ*VOL(I)/VOLMER(JND)
240 CONTINUE
250 CONTINUE
DO 260 IND=1,NBNRS
MATRIX(INM(IND,INOR,NBNRS),INM(JNBN,JNOR,NBNRS))=AWPHI(IND)
260 CONTINUE
270 CONTINUE
271 CONTINUE
272 CONTINUE
*
DO 280 I=1,NBNRS*NORI
MATRIX(I,I)=MATRIX(I,I)+1.0D0
280 CONTINUE
CALL ALSBD(NBNRS*NORI,1,MATRIX,IER,NBNRS*NORI)
IF(IER.NE.0) CALL XABORT('USSEXC: SINGULAR MATRIX.')
XFLUX(:NBNRS,:NORI)=0.0
DO 295 IND=1,NBNRS
DO 290 INOR=1,NORI
I1=INM(IND,INOR,NBNRS)
XFLUX(IND,INOR)=REAL(MATRIX(I1,NBNRS*NORI+1))
290 CONTINUE
295 CONTINUE
* END OF RESPONSE MATRIX APPROACH.
*
*----
* COLLECT THE BASE POINTS IN PARTIAL CROSS SECTION.
*----
DO 340 JRES=1,NIRES
JPLIB=LCMGID(IPPT1(JRES),'GROUP-PT')
CALL LCMLEL(JPLIB,IGRP,ILONG,ITYLCM)
IF(ILONG.NE.0) THEN
KPLIB=LCMGIL(JPLIB,IGRP)
CALL LCMINF(KPLIB,TEXT12,TEXX12,EMPTY,ILONG,LCM)
CALL LCMLEN(KPLIB,'PROB-TABLE',LENG,ITYLCM)
NPART=LENG/MAXNOR
IF(LCM) THEN
CALL LCMGPD(KPLIB,'PROB-TABLE',SIGP_PTR)
CALL C_F_POINTER(SIGP_PTR,SIGP,(/ MAXNOR*NPART /))
ELSE
ALLOCATE(SIGP(MAXNOR*NPART))
CALL LCMGET(KPLIB,'PROB-TABLE',SIGP)
ENDIF
DO 330 INOR=1,NOR(JRES,IGRP)
WEIGH(INOR,JRES)=SIGP(INOR)
SIGWS(INOR,JRES)=SIGP(3*MAXNOR+INOR)
330 CONTINUE
IF(.NOT.LCM) DEALLOCATE(SIGP)
ELSE
WEIGH(1,JRES)=1.0
SIGWS(1,JRES)=SSGAR(IPPT2(JRES,1),JRES,1,IGRP)
ENDIF
340 CONTINUE
*----
* COMPUTE THE AVERAGED SOURCE.
*----
ALLOCATE(FUN(NUN*NORI),SUN(NUN*NORI))
SUN(:NUN*NORI)=0.0
ALLOCATE(NPSYS(NORI))
DO 385 INOR=1,NORI
NPSYS(INOR)=IASM+INOR
KPSYS=LCMGIL(IPSYS,IASM+INOR)
CALL LCMLEN(KPSYS,'FUNKNO$USS',ILENG,ITYLCM)
IF(ILENG.EQ.NUN) THEN
CALL LCMGET(KPSYS,'FUNKNO$USS',FUN((INOR-1)*NUN+1))
ELSE
FUN((INOR-1)*NUN+1:INOR*NUN)=0.0
ENDIF
SIGG(0)=0.0
DO 380 IBM=1,NBMIX
QQQ=SIGGAR(IBM,0,IGRP,3)
IND=IREX(IBM)
DO 360 JRES=1,NIRES
IF((JRES.NE.IRES).AND.(IND.GT.0)) THEN
QQQ=QQQ+SIGGAR(IBM,JRES,IGRP,4)
ENDIF
360 CONTINUE
IF(IND.GT.0) THEN
DO 370 JNOR=1,NORI
IF(JNOR.NE.INOR) THEN
QQQ=QQQ+WEIGH(JNOR,IRES)*CONR(IND,IRES)*SIGWS(JNOR,IRES)*
1 XFLUX(IND,JNOR)
ENDIF
370 CONTINUE
ENDIF
SIGG(IBM)=QQQ*WEIGH(INOR,IRES)
380 CONTINUE
IOF=(INOR-1)*NUN
CALL DOORS(CDOOR,IPTRK,NBMIX,0,NUN,SIGG,SUN(IOF+1))
385 CONTINUE
*
IF(IMPX.GT.0) THEN
WRITE(TEXT12,'(3A4)') (IPPT2(IRES,I),I=2,4)
WRITE(6,'(15H USSEXC: GROUP=,I5,24H. SUBGROUP CALCULATION B,
1 37HASED ON RESPONSE MATRICES. ISOTOPE='',A12,2H''.)') IGRP,
2 TEXT12
ENDIF
*----
* SOLVE FOR THE MULTIBAND FLUX (VECTOR OF LENGTH NREG).
*----
IPMACR=C_NULL_PTR
IPSOU=C_NULL_PTR
REBFLG=.FALSE.
CALL DOORFV(CDOOR,IPSYS,NPSYS,IPTRK,IFTRAK,IMPX,NORI,NBMIX,IDIR,
1 NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUN,FUN,IPMACR,IPSOU,
2 REBFLG)
DEALLOCATE(NPSYS)
*----
* INTEGRATE THE REGION-ORDERED FLUX OVER SUBGROUPS AND COMPUTE UNGAR,
* THE REGION-ORDERED FLUX.
*----
UNGAR(:NREG,IRES,IGRP)=0.0
DO 420 INOR=1,NORI
KPSYS=LCMGIL(IPSYS,IASM+INOR)
IOF=(INOR-1)*NUN
CALL LCMPUT(KPSYS,'FUNKNO$USS',NUN,2,FUN(IOF+1))
*
DO 410 I=1,NREG
IOF=(INOR-1)*NUN+KEYFLX(I)-1
UNGAR(I,IRES,IGRP)=UNGAR(I,IRES,IGRP)+FUN(IOF+1)
410 CONTINUE
420 CONTINUE
DEALLOCATE(SUN,FUN)
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(MATRIX)
DEALLOCATE(SIGG,AWPHI,PAV,SIGWS,TOTPT,WEIGH)
RETURN
END
|