summaryrefslogtreecommitdiff
path: root/Dragon/src/TRIFLV.f
blob: 81483775b120ebb132f2fe7898669cd11b51d6e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
*DECK TRIFLV
      SUBROUTINE TRIFLV(KPSYS,INCONV,NGIND,IPTRK,IMPX,MAXIT,NGEFF,NREG,
     1 NUN,KEYFLX,FUNKNO,SUNKNO)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Solve N-group transport equation for fluxes using the diffusion
* approximation or simplified PN method in TRIVAC.
*
*Copyright:
* Copyright (C) 2007 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* KPSYS   pointer to the assembly matrices. KPSYS is an array of
*         directories.
* INCONV  energy group convergence flag (set to .FALSE. if converged).
* NGIND   energy group indices assign to the NGEFF set.
* IPTRK   pointer to the tracking (L_TRACK signature).
* IMPX    print flag (equal to zero for no print).
* NGEFF   number of energy groups processed in parallel.
* NREG    total number of regions for which specific values of the
*         neutron flux and reactions rates are required.
* NUN     total number of unknowns in vectors SUNKNO and FUNKNO.
* KEYFLX  position of averaged flux elements in FUNKNO vector.
* SUNKNO  input source vector.
*
*Parameters: input/output
* FUNKNO  unknown vector.
*
*-----------------------------------------------------------------------
*
      USE GANLIB
*----
*  SUBROUTINE ARGUMENTS
*----
      TYPE(C_PTR) KPSYS(NGEFF),IPTRK
      INTEGER     MAXIT,NGEFF,NGIND(NGEFF),IMPX,NREG,NUN,KEYFLX(NREG)
      LOGICAL     INCONV(NGEFF)
      REAL        FUNKNO(NUN,NGEFF),SUNKNO(NUN,NGEFF)
*----
*  LOCAL VARIABLES
*----
      PARAMETER  (IUNOUT=6,NSTATE=40,EPSINR=1.0E-5,ICL1=3,ICL2=3)
      DOUBLE PRECISION F1,F2,R1,R2,DMU
      INTEGER     IPAR(NSTATE)
      CHARACTER   NAMP*12
*----
*  ALLOCATABLE ARRAYS
*----
      REAL, ALLOCATABLE, DIMENSION(:) :: GAR,OLD1,OLD2
*----
*  RECOVER TRIVAC SPECIFIC PARAMETERS.
*----
      CALL LCMGET(IPTRK,'STATE-VECTOR',IPAR)
      ITY=2
      IELEM=ABS(IPAR(9))
      LL4=IPAR(11)
      ISPLH=IPAR(13)
      LX=IPAR(14)
      LZ=IPAR(16)
      NLF=IPAR(30)
      IF(IPAR(12).EQ.2) ITY=3
      IF((NLF.GT.0).AND.(ITY.GE.3)) ITY=10+ITY
      IF((ITY.EQ.11).OR.(ITY.EQ.13)) LL4=LL4*NLF/2
      NADI=IPAR(33)
*----
*  MAIN LOOP OVER ENERGY GROUPS.
*----
      ALLOCATE(GAR(NUN),OLD1(NUN),OLD2(NUN))
      GAR(:NUN)=0.0
      OLD1(:NUN)=0.0
      OLD2(:NUN)=0.0
      DO 130 II=1,NGEFF
      IF(.NOT.INCONV(II)) GO TO 130
      IF(IMPX.GT.1) WRITE(IUNOUT,'(/25H TRIFLV: PROCESSING GROUP,I5,
     1 6H WITH ,A,1H.)') NGIND(II),'TRIVAC'
*----
*  SOLVE FOR THE FLUXES. USE EQUATION (C.24) IN IGE-281.
*----
      NAMP='A001001'
      OLD2(:NUN)=0.0
      TEST=0.0
      ITER=0
   20 ITER=ITER+1
      IF(ITER.GT.MAXIT) THEN
      WRITE(IUNOUT,'(46H TRIFLV: MAXIMUM NUMBER OF ONE-SPEED ITERATION,
     1   9H REACHED.)')
         GO TO 130
      ENDIF
      DO 30 I=1,NUN
      OLD1(I)=OLD2(I)
      OLD2(I)=FUNKNO(I,II)
   30 CONTINUE
      CALL MTLDLM(NAMP,IPTRK,KPSYS(II),LL4,ITY,FUNKNO(1,II),GAR)
      DO 40 I=1,NUN
      GAR(I)=SUNKNO(I,II)-GAR(I)
   40 CONTINUE
      CALL FLDADI(NAMP,IPTRK,KPSYS(II),LL4,ITY,GAR,NADI)
      DO 50 I=1,NUN
      FUNKNO(I,II)=FUNKNO(I,II)+GAR(I)
   50 CONTINUE
*----
*  VARIATIONAL ACCELERATION.
*----
      DMU=1.0D0
      IF(MOD(ITER-1,ICL1+ICL2).GE.ICL1) THEN
         F1=0.0D0
         F2=0.0D0
         DO  80 I=1,NUN
         R1=OLD2(I)-OLD1(I)
         R2=FUNKNO(I,II)-OLD2(I)
         F1=F1+R1*(R2-R1)
         F2=F2+(R2-R1)*(R2-R1)
   80    CONTINUE
         DMU=-F1/F2
         IF(DMU.GT.0.0) THEN
            DO  90 I=1,NUN
            FUNKNO(I,II)=OLD2(I)+REAL(DMU)*(FUNKNO(I,II)-OLD2(I))
            OLD2(I)=OLD1(I)+REAL(DMU)*(OLD2(I)-OLD1(I))
   90       CONTINUE
         ENDIF
      ENDIF      
*----
*  CALCULATE ERROR AND TEST FOR CONVERGENCE.
*----
      AAA=0.0
      BBB=0.0
      DO 100 I=1,NREG
      IF(KEYFLX(I).EQ.0) GO TO 100
      AAA=MAX(AAA,ABS(FUNKNO(KEYFLX(I),II)-OLD2(KEYFLX(I))))
      BBB=MAX(BBB,ABS(FUNKNO(KEYFLX(I),II)))
  100 CONTINUE
      IF(IMPX.GT.2) WRITE(IUNOUT,300) ITER,AAA,BBB,DMU
      IF(AAA.LE.EPSINR*BBB) GO TO 130
      IF(ITER.EQ.1) TEST=AAA
      IF((ITER.GE.10).AND.(AAA.GT.TEST)) THEN
         WRITE(IUNOUT,'(43H TRIFLV: UNABLE TO CONVERGE ONE-SPEED ITERA,
     1   6HTIONS.)')
         GO TO 130
      ENDIF
      GO TO 20
*----
* END OF LOOP OVER ENERGY GROUPS
*----
  130 CONTINUE
      DEALLOCATE(OLD2,OLD1,GAR)
      RETURN
*
  300 FORMAT(28H TRIFLV: ONE-SPEED ITERATION,I3,8H  ERROR=,1P,E11.4,
     1 5H OVER,E11.4,22H  ACCELERATION FACTOR=,0P,F7.3)
      END