1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
*DECK TONSPH
SUBROUTINE TONSPH(IPLIB,IPTRK,IFTRAK,NREG,NUN,NBM,NBISO,ISONAM,
1 MAT,VOL,KEYFLX,CDOOR,INRS,LEAKSW,IMPX,DEN,MIX,LSHI,ITRANC,
2 IPHASE,NGRO,IGRMIN,IGRMAX,NBNRS,TITR,SIGT2,SIGT3,SN,SPH,ICPIJ,
3 TK3,TK4)
*
*-----------------------------------------------------------------------
*
*Purpose:
* SPH equivalence procedure over the self-shielded cross sections. Use
* all the standard solution doors of Dragon.
*
*Copyright:
* Copyright (C) 2017 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPLIB pointer to the internal microscopic cross section library
* (L_LIBRARY signature).
* IPTRK pointer to the tracking (L_TRACK signature).
* IFTRAK file unit number used to store the tracks.
* NREG number of regions.
* NUN number of unknowns per energy group.
* NBM number of mixtures in the internal library.
* NBISO number of isotopes.
* ISONAM alias name of isotopes in IPLIB.
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* KEYFLX pointers of fluxes in unknown vector.
* CDOOR name of the geometry/solution operator.
* INRS index of the resonant isotope under consideration.
* LEAKSW leakage flag (LEAKSW=.TRUE. if neutron leakage through
* external boundary is present).
* IMPX print flag (equal to zero for no print).
* DEN density of each isotope.
* MIX mix number of each isotope (can be zero).
* LSHI resonant region number associated with each isotope.
* Infinite dilution will be assumed if LSHI(i)=0.
* ITRANC type of transport correction.
* IPHASE type of flux solution (=1 use a native flux solution door;
* =2 use collision probabilities).
* NGRO number of energy groups.
* IGRMIN first group where the self-shielding is applied.
* IGRMAX most thermal group where the self-shielding is applied.
* NBNRS number of totally correlated fuel regions. NBNRS=max(IRES).
* TITR title.
* SIGT2 total macroscopic cross sections.
* SIGT3 transport correction.
* SN computed dilution cross section in each energy group of
* each isotope.
*
*Parameters: output
* SPH SPH factors.
* ICPIJ number of flux solution door calls.
*
*Parameters: input/output
* TK3 cpu time to compute system matrices.
* TK4 cpu time to compute fluxes.
*
*-----------------------------------------------------------------------
*
USE GANLIB
USE DOORS_MOD
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPLIB,IPTRK
INTEGER IFTRAK,NREG,NUN,NBM,NBISO,ISONAM(3,NBISO),MAT(NREG),
1 KEYFLX(NREG),INRS,IMPX,MIX(NBISO),LSHI(NBISO),ITRANC,IPHASE,
2 NGRO,IGRMIN,IGRMAX,NBNRS,ICPIJ
REAL VOL(NREG),DEN(NBISO),SIGT2(0:NBM,NGRO),SIGT3(0:NBM,NGRO),
1 SN(NGRO,NBISO),SPH(NBM,NGRO),TK3,TK4
LOGICAL LEAKSW
CHARACTER CDOOR*12,TITR*72,HNAMIS*12
*----
* LOCAL VARIABLES
*----
PARAMETER(NSTATE=40)
TYPE(C_PTR) JPLIB,KPLIB,IPMACR,IPSOU
LOGICAL LHOMOG,LPROB,LEXAC,LOGDO,REBFLG
CHARACTER TEXT12*12
INTEGER NALBP,ISTATE(NSTATE)
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IRES,ISONR,NPSYS
REAL, ALLOCATABLE, DIMENSION(:) :: VST,SIGTXS,SIGS0X,SIGG,FLNEW
REAL, ALLOCATABLE, DIMENSION(:,:) :: FLUX,SIG0,SIG1,SIG3,TOTAL,
1 SIGS0,TRANC,PHGAR,SUNKNO,FUNKNO
LOGICAL, ALLOCATABLE, DIMENSION(:) :: MASKI
TYPE(C_PTR), ALLOCATABLE, DIMENSION(:) :: IPISO
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(IRES(NBM),ISONR(NBISO),NPSYS(NGRO))
ALLOCATE(VST(NBNRS),SIGTXS(0:NBM),SIGS0X(0:NBM),SIGG(0:NBM),
1 FLNEW(NBNRS),SUNKNO(NUN,NGRO),FUNKNO(NUN,NGRO),FLUX(NBM,NGRO),
2 SIG0(NBM,NGRO),SIG1(NBM,NGRO),SIG3(NBM,NGRO),TOTAL(NGRO,NBNRS),
3 SIGS0(NGRO,NBNRS),TRANC(NGRO,NBNRS),PHGAR(NGRO,NBNRS))
ALLOCATE(MASKI(NBISO))
ALLOCATE(IPISO(NBISO))
*----
* FIND THE RESONANT MIXTURE NUMBERS AND THE CORRELATED ISOTOPES
* ASSOCIATED WITH REGION INRS
*----
IRES(:NBM)=0
ISONR(:NBISO)=0
IRS=0
TEXT12=' '
DO 30 IBM=1,NBM
LOGDO=.FALSE.
DO 10 I=1,NREG
LOGDO=LOGDO.OR.(MAT(I).EQ.IBM)
10 CONTINUE
IF(.NOT.LOGDO) GO TO 30
DO 20 ISO=1,NBISO
IF((MIX(ISO).EQ.IBM).AND.(LSHI(ISO).EQ.INRS)) THEN
WRITE(HNAMIS,'(3A4)') (ISONAM(I0,ISO),I0=1,3)
IF(HNAMIS.NE.TEXT12) THEN
IRS=IRS+1
TEXT12=HNAMIS
ENDIF
ISONR(ISO)=IRS
IRES(IBM)=IRS
ENDIF
20 CONTINUE
30 CONTINUE
IF(IRS.NE.NBNRS) CALL XABORT('TONSPH: INVALID VALUE OF NBNRS.')
*----
* SET THE LCM MICROLIB ISOTOPEWISE DIRECTORIES.
*----
CALL LIBIPS(IPLIB,NBISO,IPISO)
*----
* UNLOAD MICROSCOPIC X-S FROM LCM TO SCRATCH STORAGE.
*----
DO 40 ISO=1,NBISO
IRS=ISONR(ISO)
IF(IRS.GT.0) THEN
KPLIB=IPISO(ISO) ! set ISO-th isotope
CALL LCMGET(KPLIB,'NTOT0',TOTAL(1,IRS))
CALL LCMGET(KPLIB,'SIGS00',SIGS0(1,IRS))
DO IGRP=IGRMIN,IGRMAX
* Compute a ST flux for the homogeneous equivalent medium.
PHGAR(IGRP,IRS)=MAX(0.0,SN(IGRP,ISO)/(SN(IGRP,ISO)+
1 (TOTAL(IGRP,IRS)-SIGS0(IGRP,IRS))))
ENDDO
IF(ITRANC.NE.0) CALL LCMGET(KPLIB,'TRANC',TRANC(1,IRS))
ENDIF
40 CONTINUE
*----
* COMPUTE THE MERGED VOLUMES.
*----
NALBP=0
LHOMOG=.TRUE.
VST(:NBNRS)=0.0
DO 50 I=1,NREG
IBM=MAT(I)
IF(IBM.EQ.0) GO TO 50
IND=IRES(IBM)
IF(IND.EQ.0) THEN
LHOMOG=.FALSE.
ELSE
VST(IND)=VST(IND)+VOL(I)
ENDIF
50 CONTINUE
IF(LHOMOG.AND.(NBNRS.EQ.1)) GO TO 260
IF(IMPX.GE.3) WRITE(6,'(37H TONSPH: SPH FACTOR CALCULATION (NBNR,
1 2HS=,I5,1H)/)') NBNRS
*----
* SET THE MIXTURE-DEPENDENT MACROSCOPIC XS.
*----
FUNKNO(:NUN,:NGRO)=0.0
SUNKNO(:NUN,:NGRO)=0.0
NPSYS(:NGRO)=0
CALL LCMSIX(IPLIB,'SHIBA',1)
JPLIB=LCMLID(IPLIB,'GROUP',NGRO)
DO 110 IGRP=IGRMIN,IGRMAX
NPSYS(IGRP)=IGRP
*
* COMPUTE THE LIGHT AND RESONANT COMPONENTS OF THE MACROSCOPIC
* CROSS SECTIONS IN EACH RESONANT MIXTURE.
DO 70 IBM=1,NBM
SIG0(IBM,IGRP)=0.0
SIG1(IBM,IGRP)=0.0
SIG3(IBM,IGRP)=SIGT3(IBM,IGRP)
70 CONTINUE
DO 80 ISO=1,NBISO
IRS=ISONR(ISO)
IF(IRS.GT.0) THEN
IBM=MIX(ISO)
FLUX(IBM,IGRP)=PHGAR(IGRP,IRS)
SIGT2(IBM,IGRP)=SIGT2(IBM,IGRP)-TOTAL(IGRP,IRS)*DEN(ISO)
SIG0(IBM,IGRP)=TOTAL(IGRP,IRS)*DEN(ISO)
SIG1(IBM,IGRP)=SIGS0(IGRP,IRS)*DEN(ISO)
IF(ITRANC.NE.0) THEN
SIG3(IBM,IGRP)=SIGT3(IBM,IGRP)-TRANC(IGRP,IRS)*DEN(ISO)
ENDIF
ENDIF
80 CONTINUE
IF(IMPX.GE.10) THEN
WRITE (6,400) IGRP,(SIG0(I,IGRP),I=1,NBM)
WRITE (6,410) IGRP,(SIG1(I,IGRP),I=1,NBM)
WRITE (6,420) IGRP,(SIGT2(I,IGRP),I=1,NBM)
WRITE (6,430) IGRP,(FLUX(I,IGRP),I=1,NBM)
ENDIF
*----
* COMPUTE THE SOURCES.
*----
SIGG(0)=0.0
DO 90 IBM=1,NBM
SIGG(IBM)=SIGT2(IBM,IGRP)
IF(IRES(IBM).GT.0) THEN
SIGG(IBM)=SIGG(IBM)+FLUX(IBM,IGRP)*(SIG1(IBM,IGRP)-
> SIG0(IBM,IGRP))
IF(.NOT.LHOMOG) SIGG(IBM)=SIGG(IBM)-FLUX(IBM,IGRP)*
> SIGT2(IBM,IGRP)
ENDIF
90 CONTINUE
SUNKNO(:NUN,IGRP)=0.0
CALL DOORS(CDOOR,IPTRK,NBM,0,NUN,SIGG,SUNKNO(1,IGRP))
*
IF(NPSYS(IGRP).NE.0) THEN
ICPIJ=ICPIJ+1
SIGTXS(0)=0.0
SIGS0X(0)=0.0
DO 100 IBM=1,NBM
IND=IRES(IBM)
IF((ITRANC.NE.0).AND.(IND.EQ.0)) THEN
SIGTXS(IBM)=SIGT2(IBM,IGRP)-SIG3(IBM,IGRP)
ELSE
SIGTXS(IBM)=SIGT2(IBM,IGRP)
ENDIF
IF(IND.EQ.0) THEN
* REMOVE TRANSPORT CORRECTION.
IF(ITRANC.NE.0) THEN
SIGS0X(IBM)=-SIG3(IBM,IGRP)
ELSE
SIGS0X(IBM)=0.0
ENDIF
ELSE
* BELL ACCELERATION.
SIGTXS(IBM)=SIGTXS(IBM)+SIG0(IBM,IGRP)
SIGS0X(IBM)=SIGTXS(IBM)
IF(LHOMOG) SIGS0X(IBM)=SIGS0X(IBM)-SIGT2(IBM,IGRP)
ENDIF
100 CONTINUE
KPLIB=LCMDIL(JPLIB,IGRP)
CALL LCMPUT(KPLIB,'DRAGON-TXSC',NBM+1,2,SIGTXS)
CALL LCMPUT(KPLIB,'DRAGON-S0XSC',NBM+1,2,SIGS0X)
ENDIF
110 CONTINUE
*----
* SOLVE FOR THE FLUX USING DIRECT SELF-SHIELDED CROSS SECTIONS
*----
CALL KDRCPU(TKA)
ISTRM=1
NANI=1
NW=0
KNORM=1
IMPY=MAX(0,IMPX-3)
IF(IPHASE.EQ.1) THEN
* USE A NATIVE DOOR.
CALL DOORAV(CDOOR,JPLIB,NPSYS,IPTRK,IFTRAK,IMPY,NGRO,NREG,
1 NBM,NANI,NW,MAT,VOL,KNORM,LEAKSW,TITR,NALBP,ISTRM)
ELSE IF(IPHASE.EQ.2) THEN
* USE A COLLISION PROBABILITY DOOR.
IPIJK=1
ITPIJ=1
CALL DOORPV(CDOOR,JPLIB,NPSYS,IPTRK,IFTRAK,IMPY,NGRO,NREG,
1 NBM,NANI,MAT,VOL,KNORM,IPIJK,LEAKSW,ITPIJ,.FALSE.,TITR,NALBP)
ENDIF
CALL KDRCPU(TKB)
TK3=TK3+(TKB-TKA)
CALL KDRCPU(TKA)
IDIR=0
LEXAC=.FALSE.
IPMACR=C_NULL_PTR
IPSOU=C_NULL_PTR
REBFLG=.FALSE.
CALL DOORFV(CDOOR,JPLIB,NPSYS,IPTRK,IFTRAK,IMPX,NGRO,NBM,IDIR,
1 NREG,NUN,IPHASE,LEXAC,MAT,VOL,KEYFLX,TITR,SUNKNO,FUNKNO,IPMACR,
2 IPSOU,REBFLG)
CALL LCMSIX(IPLIB,' ',2)
TK4=TK4+(TKB-TKA)
*----
* HOMOGENIZE THE FLUX
*----
DO 150 IGRP=IGRMIN,IGRMAX
IF(NPSYS(IGRP).NE.0) THEN
FLNEW(:NBNRS)=0.0
DO 120 I=1,NREG
IF(MAT(I).EQ.0) GO TO 120
IND=IRES(MAT(I))
IF(IND.GT.0) FLNEW(IND)=FLNEW(IND)+FUNKNO(KEYFLX(I),IGRP)*VOL(I)
120 CONTINUE
DO 130 IND=1,NBNRS
FLNEW(IND)=FLNEW(IND)/VST(IND)
130 CONTINUE
*----
* SPH FACTOR CONTROL
*----
DO 140 IBM=1,NBM
IND=IRES(IBM)
IF(IND.GT.0) THEN
SPHNEW=PHGAR(IGRP,IND)/FLNEW(IND)
LPROB=(SPHNEW.LE.0.).OR.(SPHNEW.GT.1.).OR.(FLNEW(IND).LT.0.05)
IF(LPROB) SPHNEW=1.0
SPH(IBM,IGRP)=SPHNEW
ENDIF
140 CONTINUE
ENDIF
150 CONTINUE
*----
* SPH CORRECTION OF THE MICROLIB
*----
CALL LCMGET(IPLIB,'STATE-VECTOR',ISTATE)
NL=ISTATE(4)
NED=ISTATE(13)
NDEL=ISTATE(19)
DO 160 ISO=1,NBISO
MASKI(ISO)=(ISONR(ISO).GT.0)
160 CONTINUE
CALL TONCMI(IPLIB,IMPX,NBM,NBISO,NGRO,NL,NED,NDEL,MASKI,SPH)
IF(IMPX.GT.3) THEN
DO 170 IGRP=IGRMIN,IGRMAX
WRITE (6,440) IGRP,(SPH(IBM,IGRP),IBM=1,NBM)
170 CONTINUE
ENDIF
*----
* SCRATCH STORAGE DEALLOCATION
*----
260 DEALLOCATE(IPISO)
DEALLOCATE(MASKI)
DEALLOCATE(PHGAR,TRANC,SIGS0,TOTAL,SIG3,SIG1,SIG0,FLUX,FUNKNO,
1 SUNKNO,FLNEW,SIGG,SIGS0X,SIGTXS,VST)
DEALLOCATE(NPSYS,ISONR,IRES)
RETURN
400 FORMAT(/51H TOTAL MACROSCOPIC CROSS SECTIONS OF THE RESONANT M,
1 31HATERIALS IN EACH MIXTURE (GROUP,I5,2H):/(1X,1P,11E11.3))
410 FORMAT(/51H SCATTERING MACROSCOPIC CROSS SECTIONS OF THE OTHER,
1 33H MATERIALS IN EACH MIXTURE (GROUP,I5,2H):/(1X,1P,11E11.3))
420 FORMAT(/51H TOTAL MACROSCOPIC CROSS SECTIONS OF THE OTHER MATE,
1 28HRIALS IN EACH MIXTURE (GROUP,I5,2H):/(1X,1P,11E11.3))
430 FORMAT(/19H TABSN3 FLUX (GROUP,I5,2H):/(1X,1P,11E11.3))
440 FORMAT(/19H SPH FACTORS (GROUP,I5,2H):/(1X,1P,11E11.3))
END
|