1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
*DECK TONSN3
SUBROUTINE TONSN3 (IPLIB,IPTRK,IFTRAK,NGRO,NBISO,NBM,NREG,NUN,
1 CDOOR,INRS,NBNRS,IMPX,ISONAM,MIX,DEN,SN,LSHI,IPHASE,MAT,VOL,
2 KEYFLX,LEAKSW,TITR,START,SIGT2,SIGT3,NOCONV,ICPIJ,TK3,TK4)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Perform one multidimensional self-shielding iteration using the
* Tone's method with Nordheim (PIC) approximation.
*
*Copyright:
* Copyright (C) 2017 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPLIB pointer to the internal microscopic cross section library
* (L_LIBRARY signature).
* IPTRK pointer to the tracking. (L_TRACK signature).
* IFTRAK unit number of the sequential binary tracking file.
* NGRO number of energy groups.
* NBISO number of isotopes present in the calculation domain.
* NBM number of mixtures in the macrolib.
* NREG number of volumes.
* NUN number of unknowns in the flux or source vector in one
* energy group.
* CDOOR name of the geometry/solution module.
* INRS index of the resonant isotope under consideration.
* NBNRS number of totaly correlated resonant regions.
* IMPX print flag.
* ISONAM alias name of isotopes.
* MIX mix number of each isotope (can be zero).
* DEN density of each isotope.
* LSHI resonant region number associated with each isotope.
* Infinite dilution will be assumed if LSHI(i)=0.
* IPHASE type of flux solution (=1 use a native flux solution door;
* =2 use collision probabilities).
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* KEYFLX pointers of fluxes in unknown vector.
* LEAKSW leakage flag (=.TRUE. if leakage is present on the outer
* surface).
* TITR title.
* START beginning-of-iteration flag (=.TRUE. if TONSN3 is called
* for the first time).
* SIGT3 transport correction.
* NOCONV mixture convergence flag. (NOCONV(IBM,L)=.TRUE. if mixture IBM
* is not converged in group L).
*
*Parameters: input/output
* SN estimate of the dilution cross section in each energy group
* of each isotope on input and computed dilution cross section
* in each energy group of each isotope at output.
* SIGT2 total macroscopic cross sections on ipput and total
* macroscopic cross sections as modified by Tone's method
* at output.
*
*Parameters: output
* ICPIJ number of flux solution door calls.
*
*Reference:
* A. Hebert, 'Revisiting the Stamm'ler Self-Shielding Method', Presented
* at the 25th CNS annnual conference, June 6-9, Toronto, 2004.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
TYPE(C_PTR) IPLIB,IPTRK
INTEGER IFTRAK,NGRO,NBISO,NBM,NREG,NUN,INRS,NBNRS,IMPX,
1 ISONAM(3,NBISO),MIX(NBISO),LSHI(NBISO),IPHASE,MAT(NREG),
2 KEYFLX(NREG),ICPIJ
REAL DEN(NBISO),SN(NGRO,NBISO),VOL(NREG),SIGT2(0:NBM,NGRO),
1 SIGT3(0:NBM,NGRO),TK3,TK4
CHARACTER CDOOR*12,TITR*72
LOGICAL LEAKSW,START,NOCONV(NBM,NGRO)
*----
* LOCAL VARIABLES
*----
TYPE(C_PTR) KPLIB
CHARACTER TEXT12*12,HNAMIS*12
LOGICAL LOGDO
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, ALLOCATABLE, DIMENSION(:) :: IRES,ISONR,NPSYS
REAL, ALLOCATABLE, DIMENSION(:) :: GAR,GAS,VST,DENM
REAL, ALLOCATABLE, DIMENSION(:,:) :: SIGT0,TOTAL,SIGE
LOGICAL, ALLOCATABLE, DIMENSION(:) :: MASKI
TYPE(C_PTR), ALLOCATABLE, DIMENSION(:) :: IPISO
*----
* SCRATCH STORAGE ALLOCATION
* SIGT0 macroscopic xs of the resonant isotopes as interpolated.
*----
ALLOCATE(IRES(NBM),ISONR(NBISO),NPSYS(NGRO))
ALLOCATE(SIGT0(0:NBM,NGRO),TOTAL(NGRO,NBNRS),DENM(0:NBM),
1 GAR(NGRO),GAS(NGRO),SIGE(NBNRS,NGRO),VST(NBNRS))
ALLOCATE(MASKI(NBISO))
ALLOCATE(IPISO(NBISO))
*----
* FIND THE RESONANT MIXTURE NUMBERS AND THE CORRELATED ISOTOPES
* ASSOCIATED WITH REGION INRS
*----
IRES(:NBM)=0
ISONR(:NBISO)=0
MASKI(:NBISO)=.FALSE.
IRS=0
TEXT12=' '
DO 30 IBM=1,NBM
LOGDO=.FALSE.
DO 10 I=1,NREG
LOGDO=LOGDO.OR.(MAT(I).EQ.IBM)
10 CONTINUE
IF(.NOT.LOGDO) GO TO 30
DO 20 ISO=1,NBISO
LOGDO=START.OR.(DEN(ISO).NE.0.)
IF((MIX(ISO).EQ.IBM).AND.(LSHI(ISO).EQ.INRS)) THEN
WRITE(HNAMIS,'(3A4)') (ISONAM(I0,ISO),I0=1,3)
IF(HNAMIS.NE.TEXT12) THEN
IRS=IRS+1
TEXT12=HNAMIS
IF(LOGDO) MASKI(ISO)=.TRUE.
ENDIF
ISONR(ISO)=IRS
IRES(IBM)=IRS
ENDIF
20 CONTINUE
30 CONTINUE
IF(IRS.NE.NBNRS) CALL XABORT('TONSN3: INVALID VALUE OF NBNRS.')
*----
* SET THE LCM MICROLIB ISOTOPEWISE DIRECTORIES.
*----
CALL LIBIPS(IPLIB,NBISO,IPISO)
*----
* UNLOAD MICROSCOPIC X-S FROM LCM TO SCRATCH STORAGE.
*----
DO 40 ISO=1,NBISO
IRS=ISONR(ISO)
IF(IRS.GT.0) THEN
KPLIB=IPISO(ISO) ! set ISO-th isotope
CALL LCMGET(KPLIB,'NTOT0',TOTAL(1,IRS))
ENDIF
40 CONTINUE
*
VST(:NBNRS)=0.0
DO 60 I=1,NREG
IF(MAT(I).EQ.0) GO TO 60
IND=IRES(MAT(I))
IF(IND.GT.0) VST(IND)=VST(IND)+VOL(I)
60 CONTINUE
*
NPSYS(:NGRO)=0
DO 110 LLL=1,NGRO
LOGDO=.FALSE.
DO 70 IBM=1,NBM
IRS=IRES(IBM)
IF(IRS.GT.0) LOGDO=LOGDO.OR.NOCONV(IBM,LLL)
70 CONTINUE
IF(LOGDO) THEN
NPSYS(LLL)=LLL
*
* COMPUTE THE LIGHT AND RESONANT COMPONENTS OF THE MACROSCOPIC
* CROSS SECTIONS IN EACH RESONANT MIXTURE.
DENM(0:NBM)=0.0
SIGT0(0:NBM,LLL)=0.0
DO 90 ISO=1,NBISO
IRS=ISONR(ISO)
IF(IRS.GT.0) THEN
IBM=MIX(ISO)
DENM(IBM)=DEN(ISO)
SIGT2(IBM,LLL)=SIGT2(IBM,LLL)-TOTAL(LLL,IRS)*DEN(ISO)
SIGT0(IBM,LLL)=TOTAL(LLL,IRS)*DEN(ISO)
ENDIF
90 CONTINUE
IF(IMPX.GE.10) THEN
WRITE (6,400) LLL,(SIGT0(I,LLL),I=1,NBM)
WRITE (6,410) LLL,(SIGT2(I,LLL),I=1,NBM)
ENDIF
ENDIF
110 CONTINUE
*----
* SET UP VECTOR SIGE.
*----
CALL LCMSIX(IPLIB,'SHIBA',1)
*
SIGE(:NBNRS,:NGRO)=0.0
CALL LCMSIX(IPLIB,'--AVERAGE--',1)
CALL TONDST(IPLIB,NPSYS,IPTRK,IFTRAK,CDOOR,IMPX,NBM,NBNRS,NREG,
1 NUN,NGRO,IPHASE,MAT,VOL,KEYFLX,LEAKSW,IRES,DENM,SIGT0,SIGT2,
2 SIGT3,TITR,SIGE,TK3,TK4)
CALL LCMSIX(IPLIB,' ',2)
DO 130 LLL=1,NGRO
IF(NPSYS(LLL).NE.0) THEN
ICPIJ=ICPIJ+2
DO 120 ISO=1,NBISO
IRS=ISONR(ISO)
IF((LSHI(ISO).EQ.INRS).AND.(IRS.GT.0).AND.
1 (DEN(ISO).NE.0.0)) THEN
SN(LLL,ISO)=MAX(1.0,SIGE(IRS,LLL))
ELSE IF((LSHI(ISO).EQ.INRS).AND.(IRS.GT.0)) THEN
SN(LLL,ISO)=1.0E10
ENDIF
120 CONTINUE
ENDIF
130 CONTINUE
CALL LCMSIX(IPLIB,' ',2)
*
DO 320 LLL=1,NGRO
LOGDO=.FALSE.
DO 300 IBM=1,NBM
IRS=IRES(IBM)
IF(IRS.GT.0) LOGDO=LOGDO.OR.NOCONV(IBM,LLL)
300 CONTINUE
IF(LOGDO) THEN
DO 310 ISO=1,NBISO
IRS=ISONR(ISO)
IF(IRS.GT.0) THEN
IBM=MIX(ISO)
SIGT2(IBM,LLL)=SIGT2(IBM,LLL)+TOTAL(LLL,IRS)*DEN(ISO)
ENDIF
310 CONTINUE
ENDIF
320 CONTINUE
*----
* SAVE THE GROUP- AND ISOTOPE-DEPENDENT DILUTIONS
*----
CALL LCMPUT(IPLIB,'ISOTOPESDSB',NBISO*NGRO,2,SN)
CALL LCMPUT(IPLIB,'ISOTOPESDSN',NBISO*NGRO,2,SN)
*----
* COMPUTE THE SELF-SHIELDED MICROSCOPIC CROSS SECTIONS AND UPDATE
* VECTOR SIGT2
*----
IMPX2=MAX(0,IMPX-1)
CALL LIBLIB (IPLIB,NBISO,MASKI,IMPX2)
DO 350 ISO=1,NBISO
IRS=ISONR(ISO)
IF(IRS.GT.0) THEN
IBM=MIX(ISO)
KPLIB=IPISO(ISO) ! set ISO-th isotope
CALL LCMGET(KPLIB,'NTOT0',GAR)
DO 340 LLL=1,NGRO
TOTAL(LLL,IRS)=TOTAL(LLL,IRS)-GAR(LLL)
SIGT2(IBM,LLL)=SIGT2(IBM,LLL)-DEN(ISO)*TOTAL(LLL,IRS)
340 CONTINUE
ENDIF
350 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(IPISO)
DEALLOCATE(MASKI)
DEALLOCATE(VST,SIGE,GAS,GAR,DENM,TOTAL,SIGT0)
DEALLOCATE(NPSYS,ISONR,IRES)
RETURN
*
400 FORMAT(//51H TOTAL MACROSCOPIC CROSS SECTIONS OF THE RESONANT M,
1 31HATERIALS IN EACH MIXTURE (GROUP,I5,2H):/(1X,1P,11E11.3))
410 FORMAT(//51H TOTAL MACROSCOPIC CROSS SECTIONS OF THE OTHER MATE,
1 28HRIALS IN EACH MIXTURE (GROUP,I5,2H):/(1X,1P,11E11.3))
END
|