1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
*DECK SYBJJ1
SUBROUTINE SYBJJ1 (IPAS,NMCEL,NMERGE,NGEN,NPIJ,NPIS,EPSJ,NUNKNO,
1 FUNKNO,SUNKNO,IMPX,NCOUR,XX,YY,NMC,IFR,ALB,INUM,IGEN,PIJW,PISW,
2 PSJW,PSSW)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the neutron flux and interface currents in a 2-D Cartesian
* or hexagonal assembly using the current iteration method with Roth
* approximation.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPAS total number of regions.
* NMCEL total number of cells in the domain.
* NMERGE total number of merged cells for which specific values
* of the neutron flux and reactions rates are required.
* Many cells with different position in the domain can
* be merged before the neutron flux calculation if they
* own the same generating cell. Equal to the total number
* of distinct out-currents (NMERGE.le.NMCEL).
* NGEN total number of generating cells. A generating cell is
* defined by its material and dimensions, irrespective of
* its position in the domain (NGEN.le.NMERGE).
* NPIJ size of cellwise scattering-reduced collision probability
* matrices.
* NPIS size of cellwise scattering-reduced escape probability
* matrices.
* EPSJ stopping criterion for flux-current iterations.
* NUNKNO total number of unknowns in vectors SUNKNO and FUNKNO.
* SUNKNO input source vector.
* IMPX print flag (equal to 0 for no print).
* NCOUR number of incoming currents (=4 Cartesian lattice;
* =6 hexagonal lattice).
* XX X-thickness of the generating cells.
* YY Y-thickness of the generating cells.
* NMC offset of the first volume in each generating cell.
* IFR index-number of in-currents.
* ALB transmission/albedo associated with each in-current.
* Note: IFR and ALB contains information to rebuild the
* geometrical 'A' matrix.
* INUM index-number of the merged cell associated to each cell.
* IGEN index-number of the generating cell associated with each
* merged cell.
* PIJW cellwise scattering-reduced collision probability matrices.
* PISW cellwise scattering-reduced escape probability matrices.
* PSJW cellwise scattering-reduced collision probability matrices
* for incoming neutrons.
* PSSW cellwise scattering-reduced transmission probability matrices.
*
*Parameters: input/output
* FUNKNO unknown vector.
*
*-----------------------------------------------------------------------
*
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IPAS,NMCEL,NMERGE,NGEN,NPIJ,NPIS,NUNKNO,IMPX,NCOUR,
1 NMC(NGEN+1),IFR(NCOUR*NMCEL),INUM(NMCEL),IGEN(NMERGE)
REAL EPSJ,FUNKNO(NUNKNO),SUNKNO(NUNKNO),XX(NGEN),YY(NGEN),
1 ALB(NCOUR*NMCEL),PIJW(NPIJ),PISW(NPIS),PSJW(NPIS),PSSW(NGEN)
*----
* LOCAL VARIABLES
*----
REAL PIJ,PIS
DOUBLE PRECISION PIBB(6)
LOGICAL LOGTES
PARAMETER (MAXIT=400,LACCFC=2,ICL1=3,ICL2=3)
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, DIMENSION(:), POINTER :: INDPIJ,INDNMC
DOUBLE PRECISION, DIMENSION(:), POINTER :: CIT0
DOUBLE PRECISION, DIMENSION(:,:), POINTER :: CITR,AITR
DOUBLE PRECISION, DIMENSION(:), POINTER :: WCURR
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(INDPIJ(NGEN),INDNMC(NMERGE))
ALLOCATE(CITR(3,NMERGE),CIT0(NMERGE),AITR(2,NMERGE))
ALLOCATE(WCURR(NMERGE))
*
IPIJ=0
DO 10 JKG=1,NGEN
J2=NMC(JKG+1)-NMC(JKG)
INDPIJ(JKG)=IPIJ
IPIJ=IPIJ+J2*J2
10 CONTINUE
KNMC=0
DO 20 JKK=1,NMERGE
JKG=IGEN(JKK)
J2=NMC(JKG+1)-NMC(JKG)
INDNMC(JKK)=KNMC
KNMC=KNMC+J2
20 CONTINUE
*
DO 30 I=1,NMERGE
WCURR(I)=1.0D0
CIT0(I)=0.0D0
CITR(1,I)=FUNKNO(IPAS+I)
30 CONTINUE
*----
* COMPUTE PSJW * Q(*) CONTRIBUTION
*----
DO 45 IKK=1,NMERGE
IKG=IGEN(IKK)
I1P=NMC(IKG)
I2=NMC(IKG+1)-I1P
KNMC=INDNMC(IKK)
DO 40 I=1,I2
CIT0(IKK)=CIT0(IKK)+PSJW(I1P+I)*SUNKNO(KNMC+I)
40 CONTINUE
45 CONTINUE
*----
* COMPUTE NORMALIZATION VECTOR WCURR
*----
DO 65 ICEL=1,NMCEL
IKK=INUM(ICEL)
IS=NCOUR*(ICEL-1)
IKG=IGEN(IKK)
IF(NCOUR.EQ.4) THEN
A=XX(IKG)
B=YY(IKG)
DEN1=2.0D0*(A+B)
PIBB(1)=B/DEN1
PIBB(2)=B/DEN1
PIBB(3)=A/DEN1
PIBB(4)=A/DEN1
ELSE
DO 50 JC=1,NCOUR
PIBB(JC)=1.0D0/6.0D0
50 CONTINUE
ENDIF
DO 60 JC=1,NCOUR
J1=IFR(IS+JC)
WCURR(J1)=WCURR(J1)-PSSW(IKG)*PIBB(JC)*ALB(IS+JC)
60 CONTINUE
65 CONTINUE
*
ISTART=1
TEST=0.0D0
ITER=0
70 ITER=ITER+1
IF(ITER.GT.MAXIT) THEN
WRITE(6,'(/47H SYBJJ1: *** WARNING *** MAXIMUM NUMBER OF ITER,
1 15HATIONS REACHED.)')
GO TO 190
ENDIF
IT3=MOD(ITER,3)+1
IT2=MOD(ITER-1,3)+1
IT1=MOD(ITER-2,3)+1
DO 80 I=1,NMERGE
CITR(IT3,I)=CIT0(I)
80 CONTINUE
*----
* COMPUTE PSSW * J(-) CONTRIBUTION
*----
DO 95 ICEL=1,NMCEL
IKK=INUM(ICEL)
IS=NCOUR*(ICEL-1)
IKG=IGEN(IKK)
IF(NCOUR.EQ.4) THEN
A=XX(IKG)
B=YY(IKG)
DEN1=2.0D0*(A+B)
PIBB(1)=B/DEN1
PIBB(2)=B/DEN1
PIBB(3)=A/DEN1
PIBB(4)=A/DEN1
ELSE
DO 85 JC=1,NCOUR
PIBB(JC)=1.0D0/6.0D0
85 CONTINUE
ENDIF
DO 90 JC=1,NCOUR
J1=IFR(IS+JC)
PSS=PSSW(IKG)*PIBB(JC)
CITR(IT3,IKK)=CITR(IT3,IKK)+PSS*ALB(IS+JC)*CITR(IT2,J1)
90 CONTINUE
95 CONTINUE
*----
* NORMALIZATION
*----
S1=0.0D0
S2=0.0D0
DO 100 I=1,NMERGE
S1=S1+WCURR(I)*CITR(IT3,I)
S2=S2+CIT0(I)
100 CONTINUE
ZNORM=S2/S1
IF(ZNORM.LT.0.0D0) ZNORM=1.0D0
DO 110 I=1,NMERGE
CITR(IT3,I)=CITR(IT3,I)*ZNORM
110 CONTINUE
*----
* ONE/TWO PARAMETER ACCELERATION
*----
ALP=1.0D0
BET=0.0D0
LOGTES=(1+MOD(ITER-ISTART,ICL1+ICL2).GT.ICL1)
IF(LOGTES) THEN
DO 120 I=1,NMERGE
AITR(1,I)=CITR(IT3,I)-CITR(IT2,I)
AITR(2,I)=CITR(IT2,I)-CITR(IT1,I)
120 CONTINUE
DO 135 ICEL=1,NMCEL
IKK=INUM(ICEL)
IS=NCOUR*(ICEL-1)
IKG=IGEN(IKK)
IF(NCOUR.EQ.4) THEN
A=XX(IKG)
B=YY(IKG)
DEN1=2.0D0*(A+B)
PIBB(1)=B/DEN1
PIBB(2)=B/DEN1
PIBB(3)=A/DEN1
PIBB(4)=A/DEN1
ELSE
DO 125 JC=1,NCOUR
PIBB(JC)=1.0D0/6.0D0
125 CONTINUE
ENDIF
DO 130 JC=1,NCOUR
J1=IFR(IS+JC)
PSS=PSSW(IKG)*PIBB(JC)*ALB(IS+JC)
AITR(1,IKK)=AITR(1,IKK)-PSS*(CITR(IT3,J1)-CITR(IT2,J1))
AITR(2,IKK)=AITR(2,IKK)-PSS*(CITR(IT2,J1)-CITR(IT1,J1))
130 CONTINUE
135 CONTINUE
IF((LACCFC.EQ.1).OR.(MOD(ITER-ISTART,ICL1+ICL2).EQ.ICL1)) THEN
S1=0.0D0
S2=0.0D0
DO 140 I=1,NMERGE
S1=S1+(CITR(IT3,I)-CITR(IT2,I))*AITR(1,I)
S2=S2+AITR(1,I)*AITR(1,I)
140 CONTINUE
IF(S2.EQ.0.0D0) THEN
ISTART=ITER+1
ELSE
ALP=S1/S2
IF(ALP.LE.0.0D0) THEN
ISTART=ITER+1
ALP=1.0D0
ENDIF
ENDIF
DO 150 I=1,NMERGE
CITR(IT3,I)=CITR(IT2,I)+ALP*(CITR(IT3,I)-CITR(IT2,I))
150 CONTINUE
ELSE IF(LACCFC.EQ.2) THEN
S1=0.0D0
S2=0.0D0
S3=0.0D0
S4=0.0D0
S5=0.0D0
DO 160 I=1,NMERGE
S1=S1+(CITR(IT3,I)-CITR(IT2,I))*AITR(1,I)
S2=S2+AITR(1,I)*AITR(1,I)
S3=S3+(CITR(IT3,I)-CITR(IT2,I))*AITR(2,I)
S4=S4+AITR(1,I)*AITR(2,I)
S5=S5+AITR(2,I)*AITR(2,I)
160 CONTINUE
DET=S2*S5-S4*S4
IF(DET.EQ.0.0D0) THEN
ISTART=ITER+1
ELSE
ALP=(S5*S1-S4*S3)/DET
BET=(S2*S3-S4*S1)/DET
IF(ALP.LE.0.0D0) THEN
ISTART=ITER+1
ALP=1.0D0
BET=0.0D0
ENDIF
ENDIF
DO 170 I=1,NMERGE
CITR(IT3,I)=CITR(IT2,I)+ALP*(CITR(IT3,I)-CITR(IT2,I))+
1 BET*(CITR(IT2,I)-CITR(IT1,I))
170 CONTINUE
ENDIF
ENDIF
*----
* CHECK THE CONVERGENCE ERROR
*----
ERR1=0.0D0
ERR2=0.0D0
DO 180 I=1,NMERGE
ERR1=MAX(ERR1,ABS(CITR(IT3,I)-CITR(IT2,I)))
ERR2=MAX(ERR2,ABS(CITR(IT3,I)))
180 CONTINUE
IF(IMPX.GT.3) WRITE(6,'(30H SYBJJ1: CURRENT ITERATION NB.,I4,
1 7H ERROR=,1P,E10.3,5H OVER,E10.3,15H NORMALIZATION=,E10.3,
2 14H ACCELERATION=,2E11.3,1H.)') ITER,ERR1,ERR2,ZNORM,ALP,
3 BET/ALP
IF(ITER.EQ.1) TEST=ERR1/ERR2
IF((ITER.GT.20).AND.(ERR1/ERR2.GT.TEST)) CALL XABORT('SYBJJ1: '
1 //'CONVERGENCE FAILURE.')
IF(LOGTES.OR.(ERR1.GT.EPSJ*ERR2)) GO TO 70
IF(IMPX.GT.2) WRITE(6,'(37H SYBJJ1: CURRENT CONVERGENCE AT ITERA,
1 8HTION NB.,I4,7H ERROR=,1P,E10.3,5H OVER,E10.3,1H.)') ITER,ERR1,
2 ERR2
*
190 DO 200 I=1,IPAS
FUNKNO(I)=0.0
200 CONTINUE
DO 210 I=1,NMERGE
FUNKNO(IPAS+I)=REAL(CITR(IT3,I))
210 CONTINUE
*----
* COMPUTE PISW * J(-) CONTRIBUTION
*----
DO 250 ICEL=1,NMCEL
IKK=INUM(ICEL)
IS=NCOUR*(ICEL-1)
IKG=IGEN(IKK)
IF(NCOUR.EQ.4) THEN
A=XX(IKG)
B=YY(IKG)
DEN1=2.0D0*(A+B)
PIBB(1)=B/DEN1
PIBB(2)=B/DEN1
PIBB(3)=A/DEN1
PIBB(4)=A/DEN1
ELSE
DO 220 JC=1,NCOUR
PIBB(JC)=1.0D0/6.0D0
220 CONTINUE
ENDIF
I1P=NMC(IKG)
I2=NMC(IKG+1)-I1P
KNMC=INDNMC(IKK)
DO 240 J=1,I2
DO 230 JC=1,NCOUR
J1=IFR(IS+JC)
PIS=PISW(I1P+J)*REAL(PIBB(JC))
FUNKNO(KNMC+J)=FUNKNO(KNMC+J)+PIS*ALB(IS+JC)*FUNKNO(IPAS+J1)
230 CONTINUE
240 CONTINUE
250 CONTINUE
*----
* COMPUTE PIJW * Q(*) CONTRIBUTION
*----
DO 280 IKK=1,NMERGE
IKG=IGEN(IKK)
I2=NMC(IKG+1)-NMC(IKG)
KNMC=INDNMC(IKK)
DO 270 I=1,I2
DO 260 J=1,I2
PIJ=PIJW(INDPIJ(IKG)+(I-1)*I2+J)
FUNKNO(KNMC+J)=FUNKNO(KNMC+J)+PIJ*SUNKNO(KNMC+I)
260 CONTINUE
270 CONTINUE
280 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(WCURR)
DEALLOCATE(AITR,CIT0,CITR)
DEALLOCATE(INDNMC,INDPIJ)
RETURN
END
|