summaryrefslogtreecommitdiff
path: root/Dragon/src/SYBJJ1.f
blob: a342976ccca049935eb4787df4509ed758bf3dad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
*DECK SYBJJ1
      SUBROUTINE SYBJJ1 (IPAS,NMCEL,NMERGE,NGEN,NPIJ,NPIS,EPSJ,NUNKNO,
     1 FUNKNO,SUNKNO,IMPX,NCOUR,XX,YY,NMC,IFR,ALB,INUM,IGEN,PIJW,PISW,
     2 PSJW,PSSW)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the neutron flux and interface currents in a 2-D Cartesian
* or hexagonal assembly using the current iteration method with Roth
* approximation.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPAS    total number of regions.
* NMCEL   total number of cells in the domain.
* NMERGE  total number of merged cells for which specific values
*         of the neutron flux and reactions rates are required.
*         Many cells with different position in the domain can
*         be merged before the neutron flux calculation if they
*         own the same generating cell. Equal to the total number
*         of distinct out-currents (NMERGE.le.NMCEL).
* NGEN    total number of generating cells. A generating cell is
*         defined by its material and dimensions, irrespective of
*         its position in the domain (NGEN.le.NMERGE).
* NPIJ    size of cellwise scattering-reduced collision probability
*         matrices.
* NPIS    size of cellwise scattering-reduced escape probability
*         matrices.
* EPSJ    stopping criterion for flux-current iterations.
* NUNKNO  total number of unknowns in vectors SUNKNO and FUNKNO.
* SUNKNO  input source vector.
* IMPX    print flag (equal to 0 for no print).
* NCOUR   number of incoming currents (=4 Cartesian lattice;
*         =6 hexagonal lattice).
* XX      X-thickness of the generating cells.
* YY      Y-thickness of the generating cells.
* NMC     offset of the first volume in each generating cell.
* IFR     index-number of in-currents.
* ALB     transmission/albedo associated with each in-current.
*         Note: IFR and ALB contains information to rebuild the
*         geometrical 'A' matrix.
* INUM    index-number of the merged cell associated to each cell.
* IGEN    index-number of the generating cell associated with each
*         merged cell.
* PIJW    cellwise scattering-reduced collision probability matrices.
* PISW    cellwise scattering-reduced escape probability matrices.
* PSJW    cellwise scattering-reduced collision probability matrices
*         for incoming neutrons.
* PSSW    cellwise scattering-reduced transmission probability matrices.
* 
*Parameters: input/output
* FUNKNO  unknown vector.
*
*-----------------------------------------------------------------------
*
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER IPAS,NMCEL,NMERGE,NGEN,NPIJ,NPIS,NUNKNO,IMPX,NCOUR,
     1 NMC(NGEN+1),IFR(NCOUR*NMCEL),INUM(NMCEL),IGEN(NMERGE)
      REAL EPSJ,FUNKNO(NUNKNO),SUNKNO(NUNKNO),XX(NGEN),YY(NGEN),
     1 ALB(NCOUR*NMCEL),PIJW(NPIJ),PISW(NPIS),PSJW(NPIS),PSSW(NGEN)
*----
*  LOCAL VARIABLES
*----
      REAL PIJ,PIS
      DOUBLE PRECISION PIBB(6)
      LOGICAL LOGTES
      PARAMETER (MAXIT=400,LACCFC=2,ICL1=3,ICL2=3)
*----
*  ALLOCATABLE ARRAYS
*----
      INTEGER, DIMENSION(:), POINTER :: INDPIJ,INDNMC
      DOUBLE PRECISION, DIMENSION(:), POINTER :: CIT0
      DOUBLE PRECISION, DIMENSION(:,:), POINTER :: CITR,AITR
      DOUBLE PRECISION, DIMENSION(:), POINTER :: WCURR
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(INDPIJ(NGEN),INDNMC(NMERGE))
      ALLOCATE(CITR(3,NMERGE),CIT0(NMERGE),AITR(2,NMERGE))
      ALLOCATE(WCURR(NMERGE))
*
      IPIJ=0
      DO 10 JKG=1,NGEN
      J2=NMC(JKG+1)-NMC(JKG)
      INDPIJ(JKG)=IPIJ
      IPIJ=IPIJ+J2*J2
   10 CONTINUE
      KNMC=0
      DO 20 JKK=1,NMERGE
      JKG=IGEN(JKK)
      J2=NMC(JKG+1)-NMC(JKG)
      INDNMC(JKK)=KNMC
      KNMC=KNMC+J2
   20 CONTINUE
*
      DO 30 I=1,NMERGE
      WCURR(I)=1.0D0
      CIT0(I)=0.0D0
      CITR(1,I)=FUNKNO(IPAS+I)
   30 CONTINUE
*----
*  COMPUTE PSJW * Q(*) CONTRIBUTION
*----
      DO 45 IKK=1,NMERGE
      IKG=IGEN(IKK)
      I1P=NMC(IKG)
      I2=NMC(IKG+1)-I1P
      KNMC=INDNMC(IKK)
      DO 40 I=1,I2
      CIT0(IKK)=CIT0(IKK)+PSJW(I1P+I)*SUNKNO(KNMC+I)
   40 CONTINUE
   45 CONTINUE
*----
*  COMPUTE NORMALIZATION VECTOR WCURR
*----
      DO 65 ICEL=1,NMCEL
      IKK=INUM(ICEL)
      IS=NCOUR*(ICEL-1)
      IKG=IGEN(IKK)
      IF(NCOUR.EQ.4) THEN
         A=XX(IKG)
         B=YY(IKG)
         DEN1=2.0D0*(A+B)
         PIBB(1)=B/DEN1
         PIBB(2)=B/DEN1
         PIBB(3)=A/DEN1
         PIBB(4)=A/DEN1
      ELSE
         DO 50 JC=1,NCOUR
         PIBB(JC)=1.0D0/6.0D0
   50    CONTINUE
      ENDIF
      DO 60 JC=1,NCOUR
      J1=IFR(IS+JC)
      WCURR(J1)=WCURR(J1)-PSSW(IKG)*PIBB(JC)*ALB(IS+JC)
   60 CONTINUE
   65 CONTINUE
*
      ISTART=1
      TEST=0.0D0
      ITER=0
   70 ITER=ITER+1
      IF(ITER.GT.MAXIT) THEN
         WRITE(6,'(/47H SYBJJ1: *** WARNING *** MAXIMUM NUMBER OF ITER,
     1   15HATIONS REACHED.)')
         GO TO 190
      ENDIF
      IT3=MOD(ITER,3)+1
      IT2=MOD(ITER-1,3)+1
      IT1=MOD(ITER-2,3)+1
      DO 80 I=1,NMERGE
      CITR(IT3,I)=CIT0(I)
   80 CONTINUE
*----
*  COMPUTE PSSW * J(-) CONTRIBUTION
*----
      DO 95 ICEL=1,NMCEL
      IKK=INUM(ICEL)
      IS=NCOUR*(ICEL-1)
      IKG=IGEN(IKK)
      IF(NCOUR.EQ.4) THEN
         A=XX(IKG)
         B=YY(IKG)
         DEN1=2.0D0*(A+B)
         PIBB(1)=B/DEN1
         PIBB(2)=B/DEN1
         PIBB(3)=A/DEN1
         PIBB(4)=A/DEN1
      ELSE
         DO 85 JC=1,NCOUR
         PIBB(JC)=1.0D0/6.0D0
   85    CONTINUE
      ENDIF
      DO 90 JC=1,NCOUR
      J1=IFR(IS+JC)
      PSS=PSSW(IKG)*PIBB(JC)
      CITR(IT3,IKK)=CITR(IT3,IKK)+PSS*ALB(IS+JC)*CITR(IT2,J1)
   90 CONTINUE
   95 CONTINUE
*----
*  NORMALIZATION
*----
      S1=0.0D0
      S2=0.0D0
      DO 100 I=1,NMERGE
      S1=S1+WCURR(I)*CITR(IT3,I)
      S2=S2+CIT0(I)
  100 CONTINUE
      ZNORM=S2/S1
      IF(ZNORM.LT.0.0D0) ZNORM=1.0D0
      DO 110 I=1,NMERGE
      CITR(IT3,I)=CITR(IT3,I)*ZNORM
  110 CONTINUE
*----
*  ONE/TWO PARAMETER ACCELERATION
*----
      ALP=1.0D0
      BET=0.0D0
      LOGTES=(1+MOD(ITER-ISTART,ICL1+ICL2).GT.ICL1)
      IF(LOGTES) THEN
         DO 120 I=1,NMERGE
         AITR(1,I)=CITR(IT3,I)-CITR(IT2,I)
         AITR(2,I)=CITR(IT2,I)-CITR(IT1,I)
  120    CONTINUE
         DO 135 ICEL=1,NMCEL
         IKK=INUM(ICEL)
         IS=NCOUR*(ICEL-1)
         IKG=IGEN(IKK)
         IF(NCOUR.EQ.4) THEN
            A=XX(IKG)
            B=YY(IKG)
            DEN1=2.0D0*(A+B)
            PIBB(1)=B/DEN1
            PIBB(2)=B/DEN1
            PIBB(3)=A/DEN1
            PIBB(4)=A/DEN1
         ELSE
            DO 125 JC=1,NCOUR
            PIBB(JC)=1.0D0/6.0D0
  125       CONTINUE
         ENDIF
         DO 130 JC=1,NCOUR
         J1=IFR(IS+JC)
         PSS=PSSW(IKG)*PIBB(JC)*ALB(IS+JC)
         AITR(1,IKK)=AITR(1,IKK)-PSS*(CITR(IT3,J1)-CITR(IT2,J1))
         AITR(2,IKK)=AITR(2,IKK)-PSS*(CITR(IT2,J1)-CITR(IT1,J1))
  130    CONTINUE
  135    CONTINUE
         IF((LACCFC.EQ.1).OR.(MOD(ITER-ISTART,ICL1+ICL2).EQ.ICL1)) THEN
            S1=0.0D0
            S2=0.0D0
            DO 140 I=1,NMERGE
            S1=S1+(CITR(IT3,I)-CITR(IT2,I))*AITR(1,I)
            S2=S2+AITR(1,I)*AITR(1,I)
  140       CONTINUE
            IF(S2.EQ.0.0D0) THEN
               ISTART=ITER+1
            ELSE
               ALP=S1/S2
               IF(ALP.LE.0.0D0) THEN
                  ISTART=ITER+1
                  ALP=1.0D0
               ENDIF
            ENDIF
            DO 150 I=1,NMERGE
            CITR(IT3,I)=CITR(IT2,I)+ALP*(CITR(IT3,I)-CITR(IT2,I))
  150       CONTINUE
         ELSE IF(LACCFC.EQ.2) THEN
            S1=0.0D0
            S2=0.0D0
            S3=0.0D0
            S4=0.0D0
            S5=0.0D0
            DO 160 I=1,NMERGE
            S1=S1+(CITR(IT3,I)-CITR(IT2,I))*AITR(1,I)
            S2=S2+AITR(1,I)*AITR(1,I)
            S3=S3+(CITR(IT3,I)-CITR(IT2,I))*AITR(2,I)
            S4=S4+AITR(1,I)*AITR(2,I)
            S5=S5+AITR(2,I)*AITR(2,I)
  160       CONTINUE
            DET=S2*S5-S4*S4
            IF(DET.EQ.0.0D0) THEN
               ISTART=ITER+1
            ELSE
               ALP=(S5*S1-S4*S3)/DET
               BET=(S2*S3-S4*S1)/DET
               IF(ALP.LE.0.0D0) THEN
                  ISTART=ITER+1
                  ALP=1.0D0
                  BET=0.0D0
               ENDIF
            ENDIF
            DO 170 I=1,NMERGE
            CITR(IT3,I)=CITR(IT2,I)+ALP*(CITR(IT3,I)-CITR(IT2,I))+
     1      BET*(CITR(IT2,I)-CITR(IT1,I))
  170       CONTINUE
         ENDIF
      ENDIF
*----
*  CHECK THE CONVERGENCE ERROR
*----
      ERR1=0.0D0
      ERR2=0.0D0
      DO 180 I=1,NMERGE
      ERR1=MAX(ERR1,ABS(CITR(IT3,I)-CITR(IT2,I)))
      ERR2=MAX(ERR2,ABS(CITR(IT3,I)))
  180 CONTINUE
      IF(IMPX.GT.3) WRITE(6,'(30H SYBJJ1: CURRENT ITERATION NB.,I4,
     1 7H ERROR=,1P,E10.3,5H OVER,E10.3,15H NORMALIZATION=,E10.3,
     2 14H ACCELERATION=,2E11.3,1H.)') ITER,ERR1,ERR2,ZNORM,ALP,
     3 BET/ALP
      IF(ITER.EQ.1) TEST=ERR1/ERR2
      IF((ITER.GT.20).AND.(ERR1/ERR2.GT.TEST)) CALL XABORT('SYBJJ1: '
     1 //'CONVERGENCE FAILURE.')
      IF(LOGTES.OR.(ERR1.GT.EPSJ*ERR2)) GO TO 70
      IF(IMPX.GT.2) WRITE(6,'(37H SYBJJ1: CURRENT CONVERGENCE AT ITERA,
     1 8HTION NB.,I4,7H ERROR=,1P,E10.3,5H OVER,E10.3,1H.)') ITER,ERR1,
     2 ERR2
*
  190 DO 200 I=1,IPAS
      FUNKNO(I)=0.0
  200 CONTINUE
      DO 210 I=1,NMERGE
      FUNKNO(IPAS+I)=REAL(CITR(IT3,I))
  210 CONTINUE
*----
*  COMPUTE PISW * J(-) CONTRIBUTION
*----
      DO 250 ICEL=1,NMCEL
      IKK=INUM(ICEL)
      IS=NCOUR*(ICEL-1)
      IKG=IGEN(IKK)
      IF(NCOUR.EQ.4) THEN
         A=XX(IKG)
         B=YY(IKG)
         DEN1=2.0D0*(A+B)
         PIBB(1)=B/DEN1
         PIBB(2)=B/DEN1
         PIBB(3)=A/DEN1
         PIBB(4)=A/DEN1
      ELSE
         DO 220 JC=1,NCOUR
         PIBB(JC)=1.0D0/6.0D0
  220    CONTINUE
      ENDIF
      I1P=NMC(IKG)
      I2=NMC(IKG+1)-I1P
      KNMC=INDNMC(IKK)
      DO 240 J=1,I2
      DO 230 JC=1,NCOUR
      J1=IFR(IS+JC)
      PIS=PISW(I1P+J)*REAL(PIBB(JC))
      FUNKNO(KNMC+J)=FUNKNO(KNMC+J)+PIS*ALB(IS+JC)*FUNKNO(IPAS+J1)
  230 CONTINUE
  240 CONTINUE
  250 CONTINUE
*----
*  COMPUTE PIJW * Q(*) CONTRIBUTION
*----
      DO 280 IKK=1,NMERGE
      IKG=IGEN(IKK)
      I2=NMC(IKG+1)-NMC(IKG)
      KNMC=INDNMC(IKK)
      DO 270 I=1,I2
      DO 260 J=1,I2
      PIJ=PIJW(INDPIJ(IKG)+(I-1)*I2+J)
      FUNKNO(KNMC+J)=FUNKNO(KNMC+J)+PIJ*SUNKNO(KNMC+I)
  260 CONTINUE
  270 CONTINUE
  280 CONTINUE
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(WCURR)
      DEALLOCATE(AITR,CIT0,CITR)
      DEALLOCATE(INDNMC,INDPIJ)
      RETURN
      END