1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
*DECK SYBJJ0
SUBROUTINE SYBJJ0 (IPAS,NSUPCE,NPIJ,NUNKNO,EPSJ,FUNKNO,SUNKNO,
1 IMPX,ISTAT,NMC,PROCEL,PIJW,PISW,PSJW,PSSW)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the neutron flux and interface currents in a do-it-yourself
* geometry using the current iteration method.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPAS total number of regions.
* NSUPCE number of cells.
* NPIJ length of cellwise scattering-reduced collision probability
* matrices.
* EPSJ stopping criterion for flux-current iterations.
* NUNKNO total number of unknowns in vectors SUNKNO and FUNKNO.
* SUNKNO input source vector.
* IMPX print flag (equal to 0 for no print).
* ISTAT statistical approximation flag (set with ISTAT=1).
* NMC offset of the first volume in each cell.
* PROCEL user supplied geometrical matrix.
* PIJW cellwise scattering-reduced collision probability matrices.
* PISW cellwise scattering-reduced escape probability matrices.
* PSJW cellwise scattering-reduced collision probability matrices
* for incoming neutrons.
* PSSW cellwise scattering-reduced transmission probability matrices.
*
*Parameters: input/output
* FUNKNO unknown vector.
*
*-----------------------------------------------------------------------
*
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
*----
* SUBROUTINE ARGUMENTS
*----
INTEGER IPAS,NSUPCE,NPIJ,NUNKNO,IMPX,ISTAT,NMC(NSUPCE+1)
REAL EPSJ,FUNKNO(NUNKNO),SUNKNO(NUNKNO),PROCEL(NSUPCE,NSUPCE),
1 PIJW(NPIJ),PISW(IPAS),PSJW(IPAS),PSSW(NSUPCE)
*----
* LOCAL VARIABLES
*----
REAL PIJ
LOGICAL LOGTES
PARAMETER (MAXIT=400,LACCFC=2,ICL1=3,ICL2=3)
*----
* ALLOCATABLE ARRAYS
*----
INTEGER, DIMENSION(:), POINTER :: INDPIJ
DOUBLE PRECISION, DIMENSION(:), POINTER :: CIT0
DOUBLE PRECISION, DIMENSION(:,:), POINTER :: CITR,AITR
DOUBLE PRECISION, DIMENSION(:), POINTER :: WCURR
*----
* SCRATCH STORAGE ALLOCATION
*----
ALLOCATE(INDPIJ(NSUPCE))
ALLOCATE(CITR(3,NSUPCE),CIT0(NSUPCE),AITR(2,NSUPCE))
ALLOCATE(WCURR(NSUPCE))
*
IPIJ=0
DO 10 JKG=1,NSUPCE
J2=NMC(JKG+1)-NMC(JKG)
INDPIJ(JKG)=IPIJ
IPIJ=IPIJ+J2*J2
10 CONTINUE
*----
* PROCESS STATISTICAL APPROXIMATION
*----
IF(ISTAT.NE.0) THEN
X1=0.0D0
DO 20 IKK=1,NSUPCE
X1=X1+PSSW(IKK)*PROCEL(1,IKK)
20 CONTINUE
X1=1.0D0/(1.0D0-X1)
SSS=0.0D0
DO 35 IKK=1,NSUPCE
I1P=NMC(IKK)
I2=NMC(IKK+1)-I1P
DO 30 I=1,I2
SSS=SSS+PROCEL(1,IKK)*X1*PSJW(I1P+I)*SUNKNO(I1P+I)
30 CONTINUE
35 CONTINUE
IT3=1
DO 40 IKK=1,NSUPCE
CITR(IT3,IKK)=SSS
40 CONTINUE
GO TO 190
ENDIF
*----
* COMPUTE PSJW * Q(*) CONTRIBUTION
*----
DO 52 IKK=1,NSUPCE
CIT0(IKK)=0.0D0
CITR(1,IKK)=FUNKNO(IPAS+IKK)
DO 51 JKK=1,NSUPCE
I1P=NMC(JKK)
I2=NMC(JKK+1)-I1P
DO 50 I=1,I2
CIT0(IKK)=CIT0(IKK)+PROCEL(IKK,JKK)*PSJW(I1P+I)*SUNKNO(I1P+I)
50 CONTINUE
51 CONTINUE
52 CONTINUE
*----
* COMPUTE NORMALIZATION VECTOR WCURR
*----
DO 65 JKK=1,NSUPCE
WCURR(JKK)=1.0D0
DO 60 IKK=1,NSUPCE
WCURR(JKK)=WCURR(JKK)-PROCEL(IKK,JKK)*PSSW(JKK)
60 CONTINUE
65 CONTINUE
*
ISTART=1
TEST=0.0D0
ITER=0
70 ITER=ITER+1
IF(ITER.GT.MAXIT) THEN
WRITE(6,'(/47H SYBJJ0: *** WARNING *** MAXIMUM NUMBER OF ITER,
1 15HATIONS REACHED.)')
GO TO 190
ENDIF
IT3=MOD(ITER,3)+1
IT2=MOD(ITER-1,3)+1
IT1=MOD(ITER-2,3)+1
DO 80 I=1,NSUPCE
CITR(IT3,I)=CIT0(I)
80 CONTINUE
*----
* COMPUTE PSSW * J(-) CONTRIBUTION
*----
DO 95 IKK=1,NSUPCE
DO 90 JKK=1,NSUPCE
PSS=PROCEL(IKK,JKK)*PSSW(JKK)
CITR(IT3,IKK)=CITR(IT3,IKK)+PSS*CITR(IT2,JKK)
90 CONTINUE
95 CONTINUE
*----
* NORMALIZATION
*----
S1=0.0D0
S2=0.0D0
DO 100 I=1,NSUPCE
S1=S1+WCURR(I)*CITR(IT3,I)
S2=S2+CIT0(I)
100 CONTINUE
ZNORM=S2/S1
IF(ZNORM.LT.0.0D0) ZNORM=1.0D0
DO 110 I=1,NSUPCE
CITR(IT3,I)=CITR(IT3,I)*ZNORM
110 CONTINUE
*----
* ONE/TWO PARAMETER ACCELERATION
*----
ALP=1.0D0
BET=0.0D0
LOGTES=(1+MOD(ITER-ISTART,ICL1+ICL2).GT.ICL1)
IF(LOGTES) THEN
DO 135 IKK=1,NSUPCE
AITR(1,IKK)=CITR(IT3,IKK)-CITR(IT2,IKK)
AITR(2,IKK)=CITR(IT2,IKK)-CITR(IT1,IKK)
DO 130 JKK=1,NSUPCE
PSS=PROCEL(IKK,JKK)*PSSW(JKK)
AITR(1,IKK)=AITR(1,IKK)-PSS*(CITR(IT3,JKK)-CITR(IT2,JKK))
AITR(2,IKK)=AITR(2,IKK)-PSS*(CITR(IT2,JKK)-CITR(IT1,JKK))
130 CONTINUE
135 CONTINUE
IF((LACCFC.EQ.1).OR.(MOD(ITER-ISTART,ICL1+ICL2).EQ.ICL1)) THEN
S1=0.0D0
S2=0.0D0
DO 140 I=1,NSUPCE
S1=S1+(CITR(IT3,I)-CITR(IT2,I))*AITR(1,I)
S2=S2+AITR(1,I)*AITR(1,I)
140 CONTINUE
IF(S2.EQ.0.0D0) THEN
ISTART=ITER+1
ELSE
ALP=S1/S2
IF(ALP.LE.0.0D0) THEN
ISTART=ITER+1
ALP=1.0D0
ENDIF
ENDIF
DO 150 I=1,NSUPCE
CITR(IT3,I)=CITR(IT2,I)+ALP*(CITR(IT3,I)-CITR(IT2,I))
150 CONTINUE
ELSE IF(LACCFC.EQ.2) THEN
S1=0.0D0
S2=0.0D0
S3=0.0D0
S4=0.0D0
S5=0.0D0
DO 160 I=1,NSUPCE
S1=S1+(CITR(IT3,I)-CITR(IT2,I))*AITR(1,I)
S2=S2+AITR(1,I)*AITR(1,I)
S3=S3+(CITR(IT3,I)-CITR(IT2,I))*AITR(2,I)
S4=S4+AITR(1,I)*AITR(2,I)
S5=S5+AITR(2,I)*AITR(2,I)
160 CONTINUE
DET=S2*S5-S4*S4
IF(DET.EQ.0.0D0) THEN
ISTART=ITER+1
ELSE
ALP=(S5*S1-S4*S3)/DET
BET=(S2*S3-S4*S1)/DET
IF(ALP.LE.0.0D0) THEN
ISTART=ITER+1
ALP=1.0D0
BET=0.0D0
ENDIF
ENDIF
DO 170 I=1,NSUPCE
CITR(IT3,I)=CITR(IT2,I)+ALP*(CITR(IT3,I)-CITR(IT2,I))+
1 BET*(CITR(IT2,I)-CITR(IT1,I))
170 CONTINUE
ENDIF
ENDIF
*----
* CHECK THE CONVERGENCE ERROR
*----
ERR1=0.0D0
ERR2=0.0D0
DO 180 I=1,NSUPCE
ERR1=MAX(ERR1,ABS(CITR(IT3,I)-CITR(IT2,I)))
ERR2=MAX(ERR2,ABS(CITR(IT3,I)))
180 CONTINUE
IF(IMPX.GT.3) WRITE(6,'(30H SYBJJ0: CURRENT ITERATION NB.,I4,
1 7H ERROR=,1P,E10.3,5H OVER,E10.3,15H NORMALIZATION=,E10.3,
2 14H ACCELERATION=,2E11.3,1H.)') ITER,ERR1,ERR2,ZNORM,ALP,
3 BET/ALP
IF(ITER.EQ.1) TEST=ERR1/ERR2
IF((ITER.GT.20).AND.(ERR1/ERR2.GT.TEST)) CALL XABORT('SYBJJ0: '
1 //'CONVERGENCE FAILURE.')
IF(LOGTES.OR.(ERR1.GT.EPSJ*ERR2)) GO TO 70
IF(IMPX.GT.2) WRITE(6,'(37H SYBJJ0: CURRENT CONVERGENCE AT ITERA,
1 8HTION NB.,I4,7H ERROR=,1P,E10.3,5H OVER,E10.3,1H.)') ITER,ERR1,
2 ERR2
*
190 DO 200 I=1,IPAS
FUNKNO(I)=0.0
200 CONTINUE
DO 210 I=1,NSUPCE
FUNKNO(IPAS+I)=REAL(CITR(IT3,I))
210 CONTINUE
*----
* COMPUTE ( PISW * J(-) ) + ( PIJW * Q(*) ) CONTRIBUTION
*----
DO 240 IKK=1,NSUPCE
I1P=NMC(IKK)
I2=NMC(IKK+1)-I1P
DO 230 J=1,I2
FUNKNO(I1P+J)=FUNKNO(I1P+J)+PISW(I1P+J)*FUNKNO(IPAS+IKK)
DO 220 I=1,I2
PIJ=PIJW(INDPIJ(IKK)+(I-1)*I2+J)
FUNKNO(I1P+J)=FUNKNO(I1P+J)+PIJ*SUNKNO(I1P+I)
220 CONTINUE
230 CONTINUE
240 CONTINUE
*----
* SCRATCH STORAGE DEALLOCATION
*----
DEALLOCATE(WCURR)
DEALLOCATE(AITR,CIT0,CITR)
DEALLOCATE(INDPIJ)
RETURN
END
|