1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
*DECK SYBILP
SUBROUTINE SYBILP (IPTRK,IMPX,NREG,NBMIX,MAT,VOL,SIGT0,SIGW0,
1 NELPIJ,PIJ,ILK)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Calculation of the collision probabilities for Sybil.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* IPTRK pointer to the tracking (L_TRACK signature).
* IMPX print flag (equal to zero for no print).
* NREG total number of merged blocks for which specific values
* of the neutron flux and reactions rates are required.
* NBMIX number of mixtures (NBMIX=max(MAT(i))).
* MAT index-number of the mixture type assigned to each volume.
* VOL volumes.
* SIGT0 total macroscopic cross sections ordered by mixture.
* SIGW0 P0 within-group scattering macroscopic cross sections
* ordered by mixture.
* NELPIJ number of elements in pij matrix.
* ILK leakage flag (=.true. if neutron leakage through external
* boundary is present).
*
*Parameters: output
* PIJ reduced and symmetrized collision probabilities.
*
*-----------------------------------------------------------------------
*
USE GANLIB
*----
* SUBROUTINE ARGUMENTS
*----
LOGICAL ILK
TYPE(C_PTR) IPTRK
INTEGER IMPX,NREG,NBMIX,MAT(NREG),NELPIJ
REAL VOL(NREG),SIGT0(0:NBMIX),SIGW0(0:NBMIX),PIJ(NELPIJ)
*----
* LOCAL VARIABLES
*----
PARAMETER (EPS1=1.0E-4,NSTATE=40)
INTEGER JPAR(NSTATE)
*----
* ALLOCATABLE ARRAYS
*----
REAL, ALLOCATABLE, DIMENSION(:) :: SIGT,SIGW
REAL, ALLOCATABLE, DIMENSION(:,:) :: PP
*----
* BICKLEY FLAG
*----
SAVE IBICKL
DATA IBICKL/0/
*----
* RECOVER BICKLEY FUNCTIONS
*----
IF(IBICKL.EQ.0) THEN
CALL XDRTA2
IBICKL=1
ENDIF
*----
* RECOVER SYBIL SPECIFIC PARAMETERS
*----
CALL LCMGET(IPTRK,'STATE-VECTOR',JPAR)
ITG=JPAR(6)
*
ALLOCATE(SIGT(NREG),SIGW(NREG),PP(NREG,NREG))
DO 10 I=1,NREG
SIGT(I)=SIGT0(MAT(I))
SIGW(I)=SIGW0(MAT(I))
10 CONTINUE
CALL SYBCP1(IPTRK,ITG,IMPX,NREG,SIGT,SIGW,PP)
*
IF((IMPX.GE.10).OR.(IMPX.LT.0)) THEN
* CHECK THE RECIPROCITY CONDITIONS.
VOLTOT=0.0
DO 20 I=1,NREG
VOLTOT=VOLTOT+VOL(I)
20 CONTINUE
VOLTOT=VOLTOT/REAL(NREG)
WRK=0.0
DO 40 I=1,NREG
DO 30 J=1,NREG
AAA=PP(I,J)*VOL(I)
BBB=PP(J,I)*VOL(J)
WRK=MAX(WRK,ABS(AAA-BBB)/VOLTOT)
30 CONTINUE
40 CONTINUE
IF(WRK.GE.EPS1) WRITE (6,150) WRK
* CHECK THE CONSERVATION CONDITIONS.
IF(.NOT.ILK) THEN
WRK=0.0
DO 60 I=1,NREG
F1=1.0
DO 50 J=1,NREG
AAA=PP(I,J)
F1=F1-AAA*(SIGT(J)-SIGW(J))
50 CONTINUE
WRK=AMAX1(WRK,ABS(F1))
60 CONTINUE
IF(WRK.GE.EPS1) WRITE (6,160) WRK
ENDIF
ENDIF
*
IC=0
DO 80 IKK=1,NREG
IOF=(IKK-1)*NREG
DO 70 JKK=1,IKK
IC=IC+1
PIJ(IC)=PP(JKK,IKK)*VOL(JKK)
70 CONTINUE
80 CONTINUE
DEALLOCATE(PP,SIGT,SIGW)
RETURN
*
150 FORMAT (/50H THE SCATTERING-REDUCED PIJ DO NOT MEET THE RECIPR,
1 25HOCITY CONDITIONS. RECIP =,1P,E10.3/)
160 FORMAT (/50H THE SCATTERING-REDUCED PIJ DO NOT MEET THE CONSER,
1 25HVATION CONDITIONS. LEAK =,1P,E10.3/)
END
|