summaryrefslogtreecommitdiff
path: root/Dragon/src/SYBALS.f
blob: ae10ef89676d82ac9c46067c0e6512688c73e11f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
*DECK SYBALS
      SUBROUTINE SYBALS(NPIJ,MAXPTS,RAYRE,SIG,NGAUSS,ALBEDO,Z,PIJ)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Pij calculation in 1D spherical geometry. The tracking is computed
* by subroutine SYBT1D.
*
*Copyright:
* Copyright (C) 2005 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NPIJ    number of regions.
* MAXPTS  first dimension of matrix PIJ.
* RAYRE   radius of regions array.
* SIG     total cross section array.
* NGAUSS  number of Gauss points.
* ALBEDO  outside albedo.
* Z       tracking information.
*
*Parameters: output
* PIJ     reduced collision probability matrix.
*
*Reference:
* A. Kavenoky, 'Calcul et utilisation des probabilites de premiere
* collision pour les milieux heterogenes a une dimension: Les programmes
* ALCOLL et CORTINA', note CEA-N-1077, Commissariat a l'energie
* atomique, mars 1969.
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NPIJ,MAXPTS,NGAUSS
      REAL RAYRE(NPIJ+1),SIG(NPIJ),PIJ(MAXPTS,NPIJ),ALBEDO,Z(*)
*----
*  LOCAL VARIABLES
*----
      PARAMETER (PI=3.1415926535)
      LOGICAL LGEMPT
      REAL, ALLOCATABLE, DIMENSION(:,:) :: AUXI
*----
*  SCRATCH STORAGE ALLOCATION
*----
      ALLOCATE(AUXI(NPIJ,3))
*----
*  TEST FOR VOIDED REGIONS
*----
      LGEMPT=.FALSE.
      VOLI=PI*RAYRE(1)**2
      DO 10 IP=1,NPIJ
      LGEMPT=LGEMPT.OR.(2.0*(RAYRE(IP+1)-RAYRE(IP))*SIG(IP).LE.0.004)
      AUXI(IP,1)=(4.0/3.0)*PI*RAYRE(IP+1)**3-VOLI
      AUXI(IP,2)=MAX(1.0E-10,SIG(IP))
      VOLI=(4.0/3.0)*PI*RAYRE(IP+1)**3
   10 CONTINUE
      SURF=4.0*PI*RAYRE(NPIJ+1)**2
      PIJ(:MAXPTS,:NPIJ)=0.0
      IZ=1
      IF(.NOT.LGEMPT) THEN
*        NO VOIDED REGIONS DETECTED.
         DO 42 IX=1,NPIJ
         DO 41 I=1,NGAUSS
         IZ=IZ+2
         W=Z(IZ)
         DO 20 ITR=IX,NPIJ
         IZ=IZ+1
         AUXI(ITR,3)=AUXI(ITR,2)*Z(IZ)
   20    CONTINUE
         AUX0=2.0*AUXI(IX,3)
         EXP0=EXP(-AUX0)
         DII=AUX0-1.0+EXP0
         PIJ(IX,IX)=PIJ(IX,IX)+W*DII/AUXI(IX,2)**2
         TAU=AUX0
         TAU1J=0.0
         DO 40 IP=IX+1,NPIJ
         AUX1=AUXI(IP,3)
         EXP1=EXP(-TAU)
         EXP2=EXP(-AUX1)
         EXP3=EXP(-TAU1J)
         DII=AUX1-1.0+EXP2
         CII=EXP1*(1.0-2.0*EXP2+EXP2*EXP2)
         CIJ1=EXP3*(1.0-EXP0-EXP2+EXP0*EXP2)
         PIJ(IP,IP)=PIJ(IP,IP)+W*(2.0*DII+CII)/AUXI(IP,2)**2
         PIJ(IX,IP)=PIJ(IX,IP)+W*CIJ1/(AUXI(IX,2)*AUXI(IP,2))
         TAUIJ=0.0
         DO 30 JP=IP+1,NPIJ
         EXP4=EXP(-TAUIJ)
         EXP5=EXP(-AUXI(JP,3))
         CIJ2=EXP4*(1.0-EXP2-EXP5+EXP2*EXP5)
         CIJ3=EXP1*EXP2*EXP4*(1.0-EXP2-EXP5+EXP2*EXP5)
         PIJ(IP,JP)=PIJ(IP,JP)+W*(CIJ2+CIJ3)/(AUXI(IP,2)*AUXI(JP,2))
         TAUIJ=TAUIJ+AUXI(JP,3)
   30    CONTINUE
         TAU=TAU+2.0*AUX1
         TAU1J=TAU1J+AUX1
   40    CONTINUE
   41    CONTINUE
   42    CONTINUE
      ELSE
         DO 72 IX=1,NPIJ
         DO 71 I=1,NGAUSS
         IZ=IZ+2
         W=Z(IZ)
         DO 50 ITR=IX,NPIJ
         IZ=IZ+1
         AUXI(ITR,3)=AUXI(ITR,2)*Z(IZ)
   50    CONTINUE
         CALL SYB43C(DII,2.0*AUXI(IX,3))
         PIJ(IX,IX)=PIJ(IX,IX)+W*DII/AUXI(IX,2)**2
         TAU=2.0*AUXI(IX,3)
         TAU1J=0.0
         DO 70 IP=IX+1,NPIJ
         CALL SYB43C(DII,AUXI(IP,3))
         CALL SYB41C(CII,TAU,AUXI(IP,3),AUXI(IP,3))
         CALL SYB41C(CIJ1,TAU1J,2.0*AUXI(IX,3),AUXI(IP,3))
         PIJ(IP,IP)=PIJ(IP,IP)+W*(2.0*DII+CII)/AUXI(IP,2)**2
         PIJ(IX,IP)=PIJ(IX,IP)+W*CIJ1/(AUXI(IX,2)*AUXI(IP,2))
         TAUIJ=0.0
         DO 60 JP=IP+1,NPIJ
         CALL SYB41C(CIJ2,TAUIJ,AUXI(IP,3),AUXI(JP,3))
         CALL SYB41C(CIJ3,TAUIJ+TAU+AUXI(IP,3),AUXI(IP,3),AUXI(JP,3))
         PIJ(IP,JP)=PIJ(IP,JP)+W*(CIJ2+CIJ3)/(AUXI(IP,2)*AUXI(JP,2))
         TAUIJ=TAUIJ+AUXI(JP,3)
   60    CONTINUE
         TAU=TAU+2*AUXI(IP,3)
         TAU1J=TAU1J+AUXI(IP,3)
   70    CONTINUE
   71    CONTINUE
   72    CONTINUE
      ENDIF
*
      DO 85 I=1,NPIJ
      DO 80 J=I,NPIJ
      VAL=PIJ(I,J)
      PIJ(I,J)=VAL/AUXI(I,1)
      PIJ(J,I)=VAL/AUXI(J,1)
   80 CONTINUE
   85 CONTINUE
*----
*  COMPUTING REFLECTED PROBABILITIES ASSUMING WHITE BOUNDARY CONDITION.
*----
      IF(ALBEDO.NE.0.0) THEN
         PSS=1.0
         DO 100 IK=1,NPIJ
         AUXI(IK,3)=1.0
         DO 90 JK=1,NPIJ
         AUXI(IK,3)=AUXI(IK,3)-PIJ(IK,JK)*AUXI(JK,2)
   90    CONTINUE
         PSS=PSS-4.0*AUXI(IK,1)*AUXI(IK,2)*AUXI(IK,3)/SURF
  100    CONTINUE
         AUX0=ALBEDO/(1.0-ALBEDO*PSS)
         DO 120 JK=1,NPIJ
         AUX1=AUX0*(4.0*AUXI(JK,1)/SURF)*AUXI(JK,3)
         DO 110 IK=1,NPIJ
         PIJ(IK,JK)=PIJ(IK,JK)+AUXI(IK,3)*AUX1
  110    CONTINUE
  120    CONTINUE
      ENDIF
*----
*  SCRATCH STORAGE DEALLOCATION
*----
      DEALLOCATE(AUXI)
      RETURN
      END