summaryrefslogtreecommitdiff
path: root/Dragon/src/SYB004.f
blob: 928e72b343c4f1ea2b45d8c34d39c3c7eface86f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
*DECK SYB004
      SUBROUTINE SYB004 (NGEN,NPIJ,NPIS,NRAYRE,SIGT2,SIGW2,IMPX,NCOUR,
     1 IQUAD,XX,YY,LSECT,NMC,NMCR,RAYRE,MAIL,IZMAIL,RZMAIL,PIJW,PISW,
     2 PSJW,PSSW)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the cellwise scattering-reduced collision, escape and
* transmission probabilities in a 2-D Cartesian or hexagonal assembly
* with DP-0 approximation.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NGEN    total number of generating cells.
* NPIJ    length of cellwise scattering-reduced collision probability
*         matrices.
* NPIS    length of cellwise scattering-reduced escape probability
*         matrices (NPIS=NMC(NGEN+1)).
* NRAYRE  size of array RAYRE (NRAYRE=NMCR(NGEN+1)).
* SIGT2   total macroscopic cross sections.
* SIGW2   P0 within-group scattering macroscopic cross sections.
* IMPX    print flag (equal to 0 for no print).
* NCOUR   number of currents surrounding the cells (=4 Cartesian
*         lattice; =6 hexagonal lattice).
* IQUAD   quadrature parameters.
* XX      X-thickness of the generating cells.
* YY      Y-thickness of the generating cells.
* LSECT   type of sectorization.
* NMC     offset of the first volume in each generating cell.
* NMCR    offset of the first radius in each generating cell.
* RAYRE   radius of the tubes in each generating cell.
* MAIL    offset of the first tracking information in each generating
*         cell.
* IZMAIL  integer tracking information.
* RZMAIL  real tracking information.
*
*Parameters: output
* PIJW    cellwise scattering-reduced collision probability matrices.
* PISW    cellwise scattering-reduced escape probability matrices.
* PSJW    cellwise scattering-reduced collision probability matrices
*         for incoming neutrons.
* PSSW    cellwise scattering-reduced transmission probability
*         matrices.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NGEN,NPIJ,NPIS,NRAYRE,IMPX,NCOUR,IQUAD(4),LSECT(NGEN),
     1 NMC(NGEN+1),NMCR(NGEN+1),MAIL(2,NGEN),IZMAIL(*)
      REAL SIGT2(NPIS),SIGW2(NPIS),XX(NGEN),YY(NGEN),RAYRE(NRAYRE),
     1 RZMAIL(*),PIJW(NPIJ),PISW(NCOUR*NPIS),PSJW(NCOUR*NPIS),
     2 PSSW(NGEN*NCOUR*NCOUR)
*----
*  LOCAL VARIABLES
*----
      PARAMETER (PI=3.141592654,SMALL=5.0E-3,SQRT3=1.732050807568877)
      LOGICAL LSKIP
      REAL PSS(36),SURFA(6),ALPA(64),PWA(64)
      REAL, ALLOCATABLE, DIMENSION(:) :: VOL,WORK
      REAL, ALLOCATABLE, DIMENSION(:,:) :: PIS,PSJ,PP
*
      IPIJ=0
      IPIS=0
      IPSS=0
      DO 220 JKG=1,NGEN
      J1=NMC(JKG)
      J2=NMC(JKG+1)-J1
      J1R=NMCR(JKG)
      J2R=NMCR(JKG+1)-J1R
      ALLOCATE(PIS(J2,NCOUR),PSJ(NCOUR,J2),PP(J2,J2),VOL(J2))
*----
*  COMPUTE THE REDUCED COLLISION PROBABILITY MATRIX
*----
      A=XX(JKG)
      B=YY(JKG)
      IF((NCOUR.EQ.4).AND.(LSECT(JKG).NE.0)) THEN
*        SECTORIZED CARTESIAN CELL.
         IB1=MAIL(1,JKG)
         IB2=MAIL(2,JKG)
         IF(LSECT(JKG).EQ.-999) THEN
            NSECT=4
         ELSE IF((LSECT(JKG).EQ.-1).OR.(LSECT(JKG).EQ.-101)) THEN
            NSECT=8
         ELSE
            NSECT=4*MOD(ABS(LSECT(JKG)),100)
         ENDIF
         MNA4=4*IQUAD(1)
         CALL SYB4QG(IMPX,1,MNA4,J2R,NSECT,LSECT(JKG),J2,RZMAIL(IB2),
     1   IZMAIL(IB1),A,B,RAYRE(J1R+2),SIGT2(J1+1),SMALL,VOL,PP,PIS,PSS)
      ELSE IF(LSECT(JKG).NE.0) THEN
*        SECTORIZED HEXAGONAL CELL.
         IB1=MAIL(1,JKG)
         IB2=MAIL(2,JKG)
         NSECT=6
         MNA4=12*IQUAD(1)
         CALL SYB7QG(IMPX,1,MNA4,J2R,NSECT,LSECT(JKG),J2,RZMAIL(IB2),
     1   IZMAIL(IB1),A,RAYRE(J1R+2),SIGT2(J1+1),SMALL,VOL,PP,PIS,PSS)
      ELSE IF((NCOUR.EQ.4).AND.(J2.EQ.1)) THEN
         CALL ALGPT(IQUAD(3),-1.0,1.0,ALPA,PWA)
         CALL RECT1(IQUAD(3),A,B,SIGT2(J1+1),SMALL,PP,PIS,PSS,ALPA,PWA)
         VOL(1)=A*B
      ELSE IF(J2.EQ.1) THEN
         CALL ALGPT(IQUAD(3),-1.0,1.0,ALPA,PWA)
         CALL XHX2D0(IQUAD(3),ALPA,PWA,A,SIGT2(J1+1),SMALL,PP,PIS,PSS)
         VOL(1)=1.5*SQRT3*A*A
      ELSE
*        NON-SECTORIZED CARTESIAN OR HEXAGONAL CELL.
         IB1=MAIL(1,JKG)
         IB2=MAIL(2,JKG)
         CALL SYBUP0(RZMAIL(IB2),IZMAIL(IB1),NCOUR,J2,SIGT2(J1+1),SMALL,
     1   A,B,IMPX,VOL,PP,PIS,PSS)
      ENDIF
*----
*  COMPUTE THE REDUCED COLLISION PROBABILITY MATRIX FOR INCOMING
*  NEUTRONS
*----
      DO 65 I=1,J2
      IF(NCOUR.EQ.4) THEN
         SURFA(1)=0.25*B
         SURFA(2)=0.25*B
         SURFA(3)=0.25*A
         SURFA(4)=0.25*A
      ELSE
         DO 50 JC=1,6
         SURFA(JC)=0.25*A
   50    CONTINUE
      ENDIF
      DO 60 JC=1,NCOUR
      PSJ(JC,I)=PIS(I,JC)*VOL(I)/SURFA(JC)
   60 CONTINUE
   65 CONTINUE
      DEALLOCATE(VOL)
      IF(IMPX.GE.8) THEN 
         CALL SYBPRX(1,NCOUR,J2,JKG,SIGT2(J1+1),SIGW2(J1+1),PP(1,1),
     1   PIS(1,1),PSJ(1,1),PSS(1))
      ENDIF
*----
*  CHECK IF SCATTERING REDUCTION IS REQUIRED 
*----
      LSKIP=.TRUE.
      DO 70 I=1,J2
      LSKIP=LSKIP.AND.(SIGW2(J1+I).EQ.0.0)
   70 CONTINUE
*----
*  SCATTERING REDUCTION IF LSKIP=.FALSE.
*----
      IF(LSKIP) THEN
*        DO NOT PERFORM SCATTERING REDUCTION.
         DO 85 I=1,J2
         DO 80 J=1,J2
         PIJW(IPIJ+(J-1)*J2+I)=PP(I,J)
   80    CONTINUE
   85    CONTINUE
         DO 95 I=1,J2
         DO 90 JC=1,NCOUR
         PISW(IPIS+(JC-1)*J2+I)=PIS(I,JC)
         PSJW(IPIS+(I-1)*NCOUR+JC)=PSJ(JC,I)
   90    CONTINUE
   95    CONTINUE
         DO 105 IC=1,NCOUR
         DO 100 JC=1,NCOUR
         PSSW(IPSS+(JC-1)*NCOUR+IC)=PSS((JC-1)*NCOUR+IC)
  100    CONTINUE
  105    CONTINUE
      ELSE
*        COMPUTE THE SCATTERING-REDUCED COLLISION AND ESCAPE MATRICES.
         DO 120 I=1,J2
         DO 110 J=1,J2
         PIJW(IPIJ+(J-1)*J2+I)=-PP(I,J)*SIGW2(J1+J)
  110    CONTINUE
         PIJW(IPIJ+(I-1)*J2+I)=1.0+PIJW(IPIJ+(I-1)*J2+I)
  120    CONTINUE
         CALL ALINV(J2,PIJW(IPIJ+1),J2,IER)
         IF(IER.NE.0) CALL XABORT('SYB004: SINGULAR MATRIX.')
         ALLOCATE(WORK(J2))
         DO 175 I=1,J2
         DO 130 K=1,J2
         WORK(K)=PIJW(IPIJ+(K-1)*J2+I)
  130    CONTINUE
         DO 150 J=1,J2
         WGAR=0.0
         DO 140 K=1,J2
         WGAR=WGAR+WORK(K)*PP(K,J)
  140    CONTINUE
         PIJW(IPIJ+(J-1)*J2+I)=WGAR
  150    CONTINUE
         DO 170 JC=1,NCOUR
         WGAR=0.0
         DO 160 K=1,J2
         WGAR=WGAR+WORK(K)*PIS(K,JC)
  160    CONTINUE
         PISW(IPIS+(JC-1)*J2+I)=WGAR
  170    CONTINUE
  175    CONTINUE
         DEALLOCATE(WORK)
*
*        COMPUTE THE SCATTERING-REDUCED COLLISION PROBABILITY MATRIX
*        FOR INCOMING NEUTRONS.
         DO 195 IC=1,NCOUR
         DO 190 J=1,J2
         WGAR=PSJ(IC,J)
         DO 180 K=1,J2
         WGAR=WGAR+PSJ(IC,K)*SIGW2(J1+K)*PIJW(IPIJ+(J-1)*J2+K)
  180    CONTINUE
         PSJW(IPIS+(J-1)*NCOUR+IC)=WGAR
  190    CONTINUE
  195    CONTINUE
*
*        COMPUTE THE SCATTERING-REDUCED TRANSMISSION PROBABILITY MATRIX.
         DO 215 IC=1,NCOUR
         DO 210 JC=1,NCOUR
         WGAR=PSS((JC-1)*NCOUR+IC)
         DO 200 K=1,J2
         WGAR=WGAR+PSJ(IC,K)*SIGW2(J1+K)*PISW(IPIS+(JC-1)*J2+K)
  200    CONTINUE
         PSSW(IPSS+(JC-1)*NCOUR+IC)=WGAR
  210    CONTINUE
  215    CONTINUE
      ENDIF
      DEALLOCATE(PP,PSJ,PIS)
      IF(IMPX.GE.10) THEN 
        CALL SYBPRX(2,NCOUR,J2,JKG,SIGT2(J1+1),SIGW2(J1+1),PIJW(IPIJ+1),
     1  PISW(IPIS+1),PSJW(IPIS+1),PSSW(IPSS+1))
      ENDIF
      IPIJ=IPIJ+J2*J2
      IPIS=IPIS+J2*NCOUR
      IPSS=IPSS+NCOUR*NCOUR
  220 CONTINUE
      RETURN
      END