summaryrefslogtreecommitdiff
path: root/Dragon/src/SYB003.f
blob: 3ddfbf096afa47807dd7c1f37da9bc083dd523c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
*DECK SYB003
      SUBROUTINE SYB003 (NGEN,NPIJ,NPIS,SIGT2,SIGW2,IMPX,NCOUR,IWIGN,
     1 IQUAD,XX,YY,NMC,RAYRE,MAIL,RZMAIL,PIJW,PISW,PSJW,PSSW)
*
*-----------------------------------------------------------------------
*
*Purpose:
* Compute the cellwise scattering-reduced collision, escape and
* transmission probabilities in a 2-D Cartesian or hexagonal assembly
* with Roth x 4 or Roth x 6 approximation.
*
*Copyright:
* Copyright (C) 2002 Ecole Polytechnique de Montreal
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version
*
*Author(s): A. Hebert
*
*Parameters: input
* NGEN    total number of generating cells.
* NPIJ    length of cellwise scattering-reduced collision probability
*         matrices.
* NPIS    length of cellwise scattering-reduced escape probability
*         matrices (NPIS=NMC(NGEN+1)).
* SIGT2   total macroscopic cross sections.
* SIGW2   P0 within-group scattering macroscopic cross sections.
* IMPX    print flag (equal to 0 for no print).
* NCOUR   number of currents surrounding the cells (=4 Cartesian
*         lattice; =6 hexagonal lattice).
* IWIGN   type of cylinderization.
* IQUAD   quadrature parameters.
* XX      X-thickness of the generating cells.
* YY      Y-thickness of the generating cells.
* NMC     offset of the first volume in each generating cell.
* RAYRE   radius of the tubes in each generating cell.
* MAIL    offset of the first tracking information in each generating
*         cell.
* RZMAIL  real tracking information.
*
*Parameters: output
* PIJW    cellwise scattering-reduced collision probability matrices.
* PISW    cellwise scattering-reduced escape probability matrices.
* PSJW    cellwise scattering-reduced collision probability matrices
*         for incoming neutrons.
* PSSW    cellwise scattering-reduced transmission probability
*         matrices.
*
*-----------------------------------------------------------------------
*
*----
*  SUBROUTINE ARGUMENTS
*----
      INTEGER NGEN,NPIJ,NPIS,IMPX,NCOUR,IWIGN,IQUAD(4),NMC(NGEN+1),
     1 MAIL(2,NGEN)
      REAL SIGT2(NPIS),SIGW2(NPIS),XX(NGEN),YY(NGEN),RAYRE(NPIS),
     1 RZMAIL(*),PIJW(NPIJ),PISW(NCOUR*NPIS),PSJW(NCOUR*NPIS),
     2 PSSW(NGEN*NCOUR*NCOUR)
*----
*  LOCAL VARIABLES
*----
      PARAMETER (PI=3.141592654)
      LOGICAL LSKIP
      INTEGER ISLR(4,4),ISLH(6,6)
      REAL PBB(6),PSS(36)
      REAL, ALLOCATABLE, DIMENSION(:) :: RAYR2,WORK
      REAL, ALLOCATABLE, DIMENSION(:,:) :: PIS,PSJ,PP
*----
*  DATA STATEMENTS
*----
      SAVE ISLR,ISLH
      DATA ISLR/0,4,1,1,4,0,1,1,3,3,0,2,3,3,2,0/
      DATA ISLH/0,1,2,3,2,1,1,0,1,2,3,2,2,1,0,1,2,3,
     1          3,2,1,0,1,2,2,3,2,1,0,1,1,2,3,2,1,0/
*
      MR=IQUAD(4)
      IPIJ=0
      IPIS=0
      IPSS=0
      DO 240 JKG=1,NGEN
      J1=NMC(JKG)
      J2=NMC(JKG+1)-J1
*----
*  CYLINDERIZATION OPTIONS 
*----
      A=XX(JKG)
      B=YY(JKG)
      IB=MAIL(2,JKG)
      RJ1=RAYRE(NMC(JKG+1))
      SCALE1=1.0
      SCALE2=1.0
      ROUT=0.0
      IF((NCOUR.EQ.4).AND.(IWIGN.EQ.1)) THEN
*        ASKEW CYLINDERIZATION CARTESIAN.
         RJ2=(A+B)/PI
         SCALE1=(A*B-PI*RJ1**2)/(PI*RJ2**2-PI*RJ1**2)
         ROUT=RJ2
      ELSE IF((NCOUR.EQ.4).AND.(IWIGN.EQ.2)) THEN
*        WIGNER CYLINDERIZATION CARTESIAN.
         ROUT=SQRT(A*B/PI)
      ELSE IF((NCOUR.EQ.4).AND.(IWIGN.EQ.3)) THEN
*        SANCHEZ CYLINDERIZATION CARTESIAN.
         SCALE2=SQRT(PI*A*B)/(A+B)
         ROUT=SQRT(A*B/PI)
      ELSE IF(IWIGN.EQ.1) THEN
*        ASKEW CYLINDERIZATION HEXAGONAL.
         RJ2=3.0*A/PI
         SCALE1=(1.5*SQRT(3.0)*A*A-PI*RJ1**2)/(PI*RJ2**2-PI*RJ1**2)
         ROUT=RJ2
      ELSE IF(IWIGN.EQ.2) THEN
*        WIGNER CYLINDERIZATION HEXAGONAL.
         ROUT=SQRT(1.5*SQRT(3.0)/PI)*A
      ELSE IF(IWIGN.EQ.3) THEN
*        SANCHEZ CYLINDERIZATION HEXAGONAL.
         SCALE2=SQRT(PI*SQRT(3.0)/6.0)
         ROUT=SQRT(1.5*SQRT(3.0)/PI)*A
      ENDIF
      IF(ROUT.LE.RJ1) CALL XABORT('SYB003: CYLINDERIZATION ERROR.')
*----
*  COMPUTE THE REDUCED COLLISION PROBABILITY MATRIX
*----
      SURFA=0.5*PI*ROUT
      ALLOCATE(PIS(J2,NCOUR),PSJ(NCOUR,J2),PP(J2,J2),RAYR2(J2+1))
      DO 10 I=1,J2
      RAYR2(I)=RAYRE(J1+I)
   10 CONTINUE
      RAYR2(J2+1)=ROUT
      SIGT2(J1+J2)=SIGT2(J1+J2)*SCALE1
      CALL SYBALC(J2,J2,RAYR2,SIGT2(J1+1),MR,0.0,RZMAIL(IB),PP)
*
      PSSX=0.0
      RJ1=0.0
      DO 50 I=1,J2
      PISX=1.0
      RJ2=RAYR2(I+1)**2
      VV=PI*(RJ2-RJ1)
      DO 20 J=1,J2
      PISX=PISX-PP(I,J)*SIGT2(J1+J)
   20 CONTINUE
      PSSX=PSSX+PISX*SIGT2(J1+I)*VV/SURFA
      IF(NCOUR.EQ.4) THEN
         DEN1=2.0*(A+B)
         PIS(I,1)=PISX*B/DEN1
         PIS(I,2)=PISX*B/DEN1
         PIS(I,3)=PISX*A/DEN1
         PIS(I,4)=PISX*A/DEN1
      ELSE
         DO 30 IC=1,NCOUR
         PIS(I,IC)=PISX/6.0
   30    CONTINUE
      ENDIF
*----
*  COMPUTE THE REDUCED COLLISION PROBABILITY MATRIX FOR INCOMING
*  NEUTRONS
*----
      SURFA2=(0.5*PI*ROUT)/SCALE2
      DO 40 IC=1,NCOUR
      IF(I.LE.J2-1) THEN
         PSJ(IC,I)=PISX*VV/SURFA2
      ELSE IF(I.EQ.J2) THEN
         PSJ(IC,I)=PISX*VV*SCALE1/SURFA2
      ENDIF
   40 CONTINUE
      RJ1=RJ2
   50 CONTINUE
      DEALLOCATE(RAYR2)
*----
*  COMPUTE THE TRANSMISSION PROBABILITIES
*----
      PSSX=1.0-SCALE2*PSSX
      IF(NCOUR.EQ.4) THEN
         A=XX(JKG)
         B=YY(JKG)
         DEN1=MAX(2.0*B+A,2.0*A+B)
         PBB(1)=B/DEN1
         PBB(2)=MAX(A,2.0*A-B)/DEN1
         PBB(3)=A/DEN1
         PBB(4)=MAX(B,2.0*B-A)/DEN1
      ELSE
         PBB(1)=1.0/5.0
         PBB(2)=1.0/5.0
         PBB(3)=1.0/5.0
      ENDIF
      DO 65 JC=1,NCOUR
      DO 60 IC=1,NCOUR
      IF(NCOUR.EQ.4) THEN
         IB=ISLR(IC,JC)
      ELSE
         IB=ISLH(IC,JC)
      ENDIF
      IF(IB.GT.0) THEN
         PSS((JC-1)*NCOUR+IC)=PSSX*PBB(IB)
      ELSE
         PSS((JC-1)*NCOUR+IC)=0.0
      ENDIF
   60 CONTINUE
   65 CONTINUE
      SIGT2(J1+J2)=SIGT2(J1+J2)/SCALE1
      IF(IMPX.GE.8) THEN 
         CALL SYBPRX(1,NCOUR,J2,JKG,SIGT2(J1+1),SIGW2(J1+1),PP(1,1),
     1   PIS(1,1),PSJ(1,1),PSS(1))
      ENDIF
*----
*  CHECK IF SCATTERING REDUCTION IS REQUIRED
*----
      LSKIP=.TRUE.
      DO 70 I=1,J2
      LSKIP=LSKIP.AND.(SIGW2(J1+I).EQ.0.0)
   70 CONTINUE
*----
*  SCATTERING REDUCTION IF LSKIP=.FALSE.
*----
      IF(LSKIP) THEN
*        DO NOT PERFORM SCATTERING REDUCTION.
         DO 85 I=1,J2
         DO 80 J=1,J2-1
         PIJW(IPIJ+(J-1)*J2+I)=PP(I,J)
   80    CONTINUE
         PIJW(IPIJ+(J2-1)*J2+I)=PP(I,J2)*SCALE1
   85    CONTINUE
         DO 95 I=1,J2
         DO 90 JC=1,NCOUR
         PISW(IPIS+(JC-1)*J2+I)=PIS(I,JC)
         PSJW(IPIS+(I-1)*NCOUR+JC)=PSJ(JC,I)
   90    CONTINUE
   95    CONTINUE
         DO 105 IC=1,NCOUR
         DO 100 JC=1,NCOUR
         PSSW(IPSS+(JC-1)*NCOUR+IC)=PSS((JC-1)*NCOUR+IC)
  100    CONTINUE
  105    CONTINUE
      ELSE
*        COMPUTE THE SCATTERING-REDUCED COLLISION AND ESCAPE MATRICES.
         DO 120 I=1,J2
         DO 110 J=1,J2-1
         PIJW(IPIJ+(J-1)*J2+I)=-PP(I,J)*SIGW2(J1+J)
  110    CONTINUE
         PIJW(IPIJ+(J2-1)*J2+I)=-PP(I,J2)*SIGW2(J1+J2)*SCALE1
         PIJW(IPIJ+(I-1)*J2+I)=1.0+PIJW(IPIJ+(I-1)*J2+I)
  120    CONTINUE
         CALL ALINV(J2,PIJW(IPIJ+1),J2,IER)
         IF(IER.NE.0) CALL XABORT('SYB003: SINGULAR MATRIX.')
         ALLOCATE(WORK(J2))
         DO 175 I=1,J2
         DO 130 K=1,J2
         WORK(K)=PIJW(IPIJ+(K-1)*J2+I)
  130    CONTINUE
         DO 150 J=1,J2-1
         WGAR=0.0
         DO 140 K=1,J2
         WGAR=WGAR+WORK(K)*PP(K,J)
  140    CONTINUE
         PIJW(IPIJ+(J-1)*J2+I)=WGAR
  150    CONTINUE
         WGAR=0.0
         DO 155 K=1,J2
         WGAR=WGAR+WORK(K)*PP(K,J2)
  155    CONTINUE
         PIJW(IPIJ+(J2-1)*J2+I)=WGAR*SCALE1
         DO 170 JC=1,NCOUR
         WGAR=0.0
         DO 160 K=1,J2
         WGAR=WGAR+WORK(K)*PIS(K,JC)
  160    CONTINUE
         PISW(IPIS+(JC-1)*J2+I)=WGAR
  170    CONTINUE
  175    CONTINUE
         DEALLOCATE(WORK)
*
*        COMPUTE THE SCATTERING-REDUCED COLLISION PROBABILITY MATRIX
*        FOR INCOMING NEUTRONS.
         DO 200 IC=1,NCOUR
         DO 190 J=1,J2
         WGAR=PSJ(IC,J)
         DO 180 K=1,J2
         WGAR=WGAR+PSJ(IC,K)*SIGW2(J1+K)*PIJW(IPIJ+(J-1)*J2+K)
  180    CONTINUE
         PSJW(IPIS+(J-1)*NCOUR+IC)=WGAR
  190    CONTINUE
  200    CONTINUE
*
*        COMPUTE THE SCATTERING-REDUCED TRANSMISSION PROBABILITY MATRIX.
         DO 230 IC=1,NCOUR
         DO 220 JC=1,NCOUR
         WGAR=PSS((JC-1)*NCOUR+IC)
         DO 210 K=1,J2
         WGAR=WGAR+PSJ(IC,K)*SIGW2(J1+K)*PISW(IPIS+(JC-1)*J2+K)
  210    CONTINUE
         PSSW(IPSS+(JC-1)*NCOUR+IC)=WGAR
  220    CONTINUE
  230    CONTINUE
      ENDIF
      DEALLOCATE(PP,PSJ,PIS)
      IF(IMPX.GE.10) THEN 
        CALL SYBPRX(2,NCOUR,J2,JKG,SIGT2(J1+1),SIGW2(J1+1),PIJW(IPIJ+1),
     1  PISW(IPIS+1),PSJW(IPIS+1),PSSW(IPSS+1))
      ENDIF
      IPIJ=IPIJ+J2*J2
      IPIS=IPIS+J2*NCOUR
      IPSS=IPSS+NCOUR*NCOUR
  240 CONTINUE
      RETURN
      END